
BSR winter school
Big Software on the Run:

Where Software meets Data
October 23-28, Ede, The Netherlands

Tutorials & Poster abstracts

Preface

G

The winter school on “Big Software on the Run: where Software meets
Data” (BSR 2016) was held in Ede, the Netherlands, October 23-28, 2016.
In this volume, you find the tutorials’ and posters’ abstracts presented at
the winter school.

The BSR winter school is organized in the context of the 3TU.BSR
project (http://www.3tu-bsr.nl/), a joint endeavor of the Netherlands’
three technical universities, Eindhoven University of Technology, Delft
University of Technology and University of Twente. Six research groups,
specialized in different areas of software analytics are joining their forces
and conducting a multi-disciplinary research on the in vivo analysis of
large software systems.

Software systems have grown increasingly large and complex in to-
day’s highly interconnected world. Communication, production, health-
care, transportation and education all increasingly rely on Big Software.
This increasing dependence makes reliable software systems a major con-
cern and stresses the need for effective prediction of software failures.
Since software is evolving and operates in a highly dynamic and changing
environment, it becomes difficult if not impossible to anticipate all prob-
lems at design-time. Because trends like Devops blur the lines between
development and deployment, system validation must shift from testing
and verification at design time to monitoring at run time: only at run time
do we know the application context and can we carry out the appropriate
analyses and – if needed – interventions. This paradigm shift requires new
forms of empirical investigation that go far beyond the common practice
of collecting error messages and providing software updates.

The 3TU.BSR project is all about fully automatic monitoring and
diagnosis. By logging all system events and comparing the traces thus
obtained with a specification or reference model, we can check system
or application correctness: does it behave according to the specification?
The aim is to develop methods that diagnose system faults automati-
cally, and to synthesize recommended actions: which components need to
be debugged, which components need replacing, which components re-
quire more testing with what inputs? And when the system needs to be
reconfigured, which components and subsystems should we reconfigure?

These questions, as well as current research on software analytics in
general, were addressed at the BSR winter school, which brought together
university researchers, including PhD students and postdoctoral-fellows
as well as professionals from industry. The school program offered twelve
tutorial sessions of one hour and half each. All tutorials were given by
renowned researchers invited from Europe, US and Canada as well as
senior professors involved in the 3TU.BSR project.

The program of the school also included poster sessions to which par-
ticipants were asked to submit a poster and a short abstract. The par-
ticipant of the best poster as judged by the BSR scientific committee
was invited for an oral presentation of half an hour. The program fur-
ther included three hands-on sessions in which three mini-challenges were
organized. Three awards were granted to the winners of the challenges.

We are grateful to all lecturers and participants of the school for their
enthusiasm and active participation. Our gratitude is also due to all mem-
bers of the 3TU.BSR project for their hard work in organizing and prepar-
ing excellent material for the school.

October 2016 Nour Assy
Maikel Leemans

Directors

Wil M.P. van der Aalst, Eindhoven University of Technology, the Nether-
lands
Arie van Deursen, Delft University of Technology, the Netherlands

Scientific Committee

Jaco van de Pol, University of Twente, the Netherlands
Jarke J. van Wijk, Eindhoven University of Technology, the Netherlands
Boudewijn F. van Dongen, Eindhoven University of Technology, the Nether-
lands
Marieke Huisman, University of Twente, the Netherlands
Reginald L. Lagendijk, Delft University of Technology, the Netherlands
Mariëlle Stoelinga, University of Twente, the Netherlands
Annibale Panichella, Delft University of Technology, the Netherlands
Arnd Hartmaans, University of Twente, the Netherlands
Sicco Verwer, Delft University of Technology, the Netherlands

Organization Committee

Nour Assy, Eindhoven University of Technology, the Netherlands
Ine C.W.J. van der Ligt, Eindhoven University of Technology, the Nether-
lands
Maikel Leemans, Eindhoven University of Technology, the Netherlands
Cong Liu, Eindhoven University of Technology, the Netherlands
Mozhan Soltani, Delft University of Technology, the Netherlands
Tamara Brusik, Delft University of Technology, the Netherlands
Gamze Tillem, Delft University of Technology, the Netherlands
Vincent Bloemen, University of Twente, the Netherlands
Freark van der Berg, University of Twente, the Netherlands

Table of Contents

I Talks and Tutorials 5

Making Sense from Software Using Process Mining 7
Wil M.P. van der Aalst

Introduction to Data Visualization 8
Jarke J. van Wijk

Beyond Mixed Methods: Why Big Data Needs Thick Data 9
Margaret-Anne Storey

Active Learning of Automata 10
Frits Vaandrager

Supporting Data-Centered Software Development 11
Robert DeLine

Challenges in Automotive Software Development Run-
ning on Big Software . 12
M.G.J. van den Brand

Mining GitHub for Fun and Profit 15
Georgios Gousios

Scalable Model Analysis . 16
Jaco van de Pol

Reliable Concurrent Software 17
Marieke Huisman

Hot NOT to Analyze your Software 18
Bram Adams

2

Software Analysis: Anonymity and Cryptography for Pri-
vacy . 19
Zekeriya Erkin

II Posters 21

A Cross-Organizational Process Mining Framework 23
U. Aksu, D.M.M. Schunselaar, H.A. Reijers

Taming the Herd: Statistical Analysis of Large Sets of
Models . 24
Önder Babur

Attribution Required: Stack Overflow Code Snippets in
GitHub Projects . 27
Sebastian Baltes, Stepahn Diehl

Mining Software Process Lines 28
Fabian Rojas Blum

The Smallest Software Particle 31
Robert Deckers, Patricia Lago, Wan Fokkink

Designing Optimal Runtime Architectures for Enterprise
Applications on Multi-Tenant Heterogeneous Clouds . 36
Siamak Farshidi, Slinger Jansen

Using Dynamic and Contextual Features to Predict Issue
Lifetime in GitHub Projects 46
Riivo Kikas, Marlon Dumas, Dietmar Pfhal

Reproducible and Reusable Research Assets Management 48
Armel Lefebvre, Marco Spruit, Sjaak Brinkkemper

Resource Prediction for Applications Generated from
Enterprise Models . 51
Gururaj Maddodi, Slinger Jansen, Rolf de Jong

Flu-Now: Nowcasting Flu Based on Product Sales Time
Series . 54

Ioanna Miliou, Salvatore Rinzivillo, Giulio Rossetti, Dino Pe-
dreschi, Fosca Giannotti

Power-efficient Quality-assuring Decision Framework . . . 56
Fahimeh Alizadeh Moghaddam, Paola Grosso, Patricia Lago

Discovering Software Engineering Related Web Resources
and Technical Terms . 61
Gao Sa

Applications of Genetic Algorithms for Automated Crash
Reproduction . 62
Mozhan soltani, Annibale Panichella, Arie van Deursen

Variability Mining for Extractive Software Product Line
Engineering of Block-Based Modeling Languages 66
David Wille

Decision-Making Support for Software Adaptation at Run-
time . 70
Edith Zavala, Xavier Franch, Jordi Marco

HDSO: Harvest Domain Specific Non-taxonomic Rela-
tions of Ontology from Internet by Deep Neural Net-
works (DNN) . 74
Xuejiao Zhao

Lessons Learned from a Literature Survey on the Appli-
cation of Mutation Testing 80
Qianqian Zhu, Annibale Panichella, Andy Zaidman

Part I

Talks and Tutorials

Making Sense From Software Using Process
Mining

Wil M.P. van der Aalst

Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, the Netherlands

w.m.p.v.d.aalst@tue.nl

Abstract

Software-related problems have an incredible impact on society, organi-
zations, and users that increasingly rely on information technology. Since
software is evolving and operates in a changing environment, one can-
not anticipate all problems at design-time. We propose to use process
mining to analyze software in its natural habitat. Process mining aims
to bridge the gap between model-based process analysis methods such
as simulation and other business process management techniques on the
one hand and data-centric analysis methods such as machine learning
and data mining on the other. It provides tools and techniques for auto-
mated process model discovery, conformance checking, data-driven model
repair and extension, bottleneck analysis, and prediction based on event
log data. Process discovery techniques can be used to capture the real
behavior of software. Conformance checking techniques can be used to
spot deviations. The alignment of models and real software behavior can
be used to predict problems related to performance or conformance. Re-
cent developments in process mining and the instrumentation of software
make this possible. This lecture provides pointers to the state-of-the-art
in process mining and its application to software.

7

Introduction to Data Visualization

Jarke J. van Wijk

Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, The Netherlands

j.j.v.wijk@tue.nl

Abstract

Data Visualization concerns the use of interactive computer graphics to
obtain insight in large amounts of data. The aim is to exploit the unique
capabilities of the human visual system to detect patterns, structures, and
irregularities, and to enable experts to formulate new hypotheses, confirm
the expected, and to discover the unexpected. In this lecture an overview
of the field is given, illustrated with examples of work from Eindhoven,
covering a variety of different data and application domains. The focus
is on information visualization and visual analytics. We study how large
amounts of abstract data, such as tables, hierarchies, and networks can be
represented and interacted with. In many cases, combinations of such data
have to be dealt with, and also, the data is often dynamic, which brings
another big challenge. Typical use cases are how to understand large
software systems, how to analyze thousands of medicine prescriptions,
and how to see patterns in huge telecom datasets. In visual analytics, the
aim is to integrate methods from statistics, machine learning, and data
mining, as well as to support data types such as text and multimedia,
and to support the full process from data acquisition to presentation.

8

Beyond Mixed Methods: Why Big Data Needs
Thick Data

Margaret-Anne Storey

University of Victoria, Victoria, BC, Canada
mstorey@uvic.ca

Abstract

Software analytics and the use of computational methods on “big” data
in software engineering is transforming the ways software is developed,
used, improved and deployed. Software engineering researchers and prac-
titioners are witnessing an increasing trend in the availability of diverse
trace and operational data and the methods to analyze the data. This
information is being used to paint a picture of how software is engineered
and suggest ways it may be improved.

Although, software analytics shows great potential for improving soft-
ware quality, user experience and developer productivity, it is important
to remember that software engineering is inherently a socio-technical en-
deavour, with complex practices, activities and cultural aspects that can-
not be externalized or captured by tools alone. Consequently, we need
other methods to surface “thick data” that will provide rich explanations
and narratives about the hidden aspects of software engineering.

In this tutorial, we will explore the following questions:

– What kinds of risks should be considered when using software analyt-
ics in automated software engineering?

– Are researchers and practitioners adequately considering the unantic-
ipated impacts that software analytics can have on software engineer-
ing processes and stakeholders?

– Are there important questions that are not being asked because the
answers do not lie in the data that are readily available?

– Can we improve the application of software analytics using other
methods that collect insights directly from participants in software
engineering (e.g., through observations)?

– How can we combine or develop new methods that combine “big data”
with “thick data” to bring more meaningful and actionable insights?

We will discuss these questions through specific examples and case
studies.

9

Active Learning of Automata

Frits Vaandrager

Institute for Computing and Information Sciences
Radboud University, Nijmegen, The Netherlands

F.Vaandrager@cs.ru.nl

Abstract

Active automata learning is emerging as a highly effective technique for
obtaining state machine models of software components. In this talk, I
will give a survey of recent progress in the field, highlight applications,
and identify some remaining research challenges.

10

Supporting Data-Centered Software
Development

Robert DeLine

Microsoft Research, Redmond, Washington 98052
rdeline@microsoft.com

Abstract

Modern software consists of both logic and data. Some use of the data
is “back stage”, invisible to customers. For example, teams analyze ser-
vice logs to make engineering decisions, like assigning bug and feature
priorities, or use dashboards to monitor service performance. Other use
of data is “on stage” (that is, part of the user experience), for example,
the graph algorithms of the Facebook feed, the machine learning behind
web search results, or the signal processing inside fitness bracelets. Today,
working with data is typically assigned to the specialized role of the data
scientist, a discipline with its own tools, skills and knowledge. In the first
part of talk, I’ll describe some empirical studies of the emerging role of
data scientists, to convey their current work practice.

Over time, working with data is likely to change from a role to a skill.
As a precedent, software testing was originally the responsibility of the
role of software testers. Eventually, the prevalence of test-driven devel-
opment and unit tests turned testing into a skill that many developers
practice. Will the same be true of the role of data scientists? Is it possible
to create tools to allow a wide range of developers (or even end users) to
analyze data and to create data-centered algorithms? The second part the
talk will demo emerging tools that take initial steps toward democratizing
data science.

11

Challenges in Automotive Software Development
Running on Big Software

M.G.J. van den Brand

Eindhoven University of Technology, Groene Loper 5,
NL-5612 AZ Eindhoven, The Netherlands

m.g.j.v.d.brand@tue.nl

1 Abstract

The amount of software in vehicles has increased rapidly. The first lines of
code in a vehicle were introduced in 1970s, nowadays over 100 million lines
of code is no exception in a premium car. More and more functionality
is realised in software and software is the main innovator at this moment
in automotive domain. The amount of software will increase because of
future innovations, think of adaptive cruise control, lane keeping, etc.,
which all leads to the ultimate goal of autonomous driving.

Automotive systems can be categorized into vehicle-centric functional
domains (including powertrain control, chassis control, and active/passive
safety systems) and passenger-centric functional domains (covering multi-
media/ telematics, body/comfort, and Human Machine Interface). From
these domains, powertrain, connectivity, active safety and assisted driving
are considered major areas of potential innovation. The ever increasing
amount of software to enable innovation in vehicle-centric functional do-
mains requires even more attention to assessment and improvement of
the quality of automotive software. This is because software-driven in-
novations can come with software defects, failures, and vulnerability for
hackers attacks. This can be observed by the enormous amounts of recalls
lately, quite a few are software related.

Functional safety is another important aspect of automotive software.
Failures in the software may be costly, because of the recalls, but may
even be life threatening. The failure or malfunctioning of an automotive
system may result in serious injuries or death of people. A number of
functional safety standards have been developed for safety-critical sys-
tems; the ISO26262 standard is the functional safety standard for the
automotive domain, geared towards passenger cars. A new version of the
ISO26262 standard will cover trucks, busses and motor cycles as well. The
automotive industry start to apply these safety standards as guidelines

12

M.G.J. van den Brand

in their development projects. However, compliance with these standards
are still very costly and time consuming due to huge amount of manual
work.

In the last six years we have been doing research in the domain of
automotive software development. We have investigated how to evaluate
the quality of automotive software architectures. Software in the automo-
tive domain is mainly developed in Matlab/Simulink and more recently
SysML; from the developed models C code is generated. Of course, some
functioanality is developed directly in C. We have used general software
quality metrics frameworks to establish the quality of Matlab/Simulink
and SysML models [1] and automotive software architectures in gen-
eral [2, 3]. In the area of functional safety we have applied model driven
techniques to support functional safety development process and safety
assurance. We have done research on how to apply ISO26262 for func-
tional safety improvement [4]. Furthermore, we have developed a meta-
model for the ISO26262 standard; generated based on this meta-model
tooling for safety case construction and assessment [5–8].

Recent research focuses on the integration of functional safety stan-
dards in the development process [4]. In the future we want to investigate
how functional safety related requirements can be covered directly in the
automotive architecture at an early stage. We will do this in relation to
research in the field of autonomous driving.

References

1. Yanja Dajsuren, Mark G. J. van den Brand, Alexander Serebrenik, and Serguei A.
Roubtsov. Simulink models are also software: modularity assessment. In Proceed-
ings of the 9th international ACM SIGSOFT conference on Quality of Software
Architectures, QoSA 2013, part of Comparch ’13 Federated Events on Component-
Based Software Engineering and Software Architecture, Vancouver, BC, Canada,
June 17-21, 2013, pages 99–106, 2013.

2. Yanja Dajsuren, Mark van den Brand, Alexander Serebrenik, and Rudolf Huisman.
Automotive adls: A study on enforcing consistency through multiple architectural
levels. In Proceedings of the 8th International ACM SIGSOFT Conference on Qual-
ity of Software Architectures, QoSA ’12, pages 71–80, New York, NY, USA, 2012.
ACM.

3. Yanja Dajsuren, Christine M. Gerpheide, Alexander Serebrenik, Anton Wijs, Bog-
dan Vasilescu, and Mark G. J. van den Brand. Formalizing correspondence rules
for automotive architecture views. In QoSA’14, Proceedings of the 10th Interna-
tional ACM SIGSOFT Conference on Quality of Software Architectures (part of
CompArch 2014), Marcq-en-Baroeul, Lille, France, June 30 - July 04, 2014, pages
129–138, 2014.

4. Arash Khabbaz Saberi, Yaping Luo, Filip Pawel Cichosz, Mark van den Brand, and
Sven Jansen. An Approach for Functional Safety Improvement of an Existing Auto-

13

Challenges in Automotive Software Development Running on Big Software

motive System. In Systems Conference (SysCon), 9th Annual IEEE International,
pages 277–282, 2015.

5. Yaping Luo, Mark van den Brand, Luc Engelen, and Martijn Klabbers. A modeling
approach to support safety assurance in the automotive domain. In Progress in
Systems Engineering, pages 339–345. Springer, 2015.

6. Yaping Luo, Mark van den Brand, Luc Engelen, John M. Favaro, Martijn Klab-
bers, and Giovanni Sartori. Extracting models from ISO 26262 for reusable safety
assurance. In Safe and Secure Software Reuse - 13th International Conference on
Software Reuse, ICSR 2013, Pisa, Italy, June 18-20. Proceedings, pages 192–207,
2013.

7. Yaping Luo, Mark van den Brand, Luc Engelen, and Martijn Klabbers. From
conceptual models to safety assurance. In Conceptual Modeling - 33rd International
Conference, ER 2014, Atlanta, GA, USA, October 27-29, 2014. Proceedings, pages
195–208, 2014.

8. Yaping Luo and Mark van den Brand. Metrics design for safety assessment. Infor-
mation & Software Technology, 73:151–163, 2016.

14

Mining GitHub for Fun and Profit

Georgios Gousios

Delft University of Technology, Delft, the Netherlands
g.gousios@tudelft.nl

Abstract

Modern organizations use telemetry and process data to make software
production more efficient. Consequently, software engineering is an in-
creasingly data-centered scientific field. With over 30 million repositories
and 10 million users, GitHub is currently the largest code hosting site in
the world. Software engineering researchers have been drawn to GitHub
due to this popularity, as well as its integrated social features and the
metadata that can be accessed through its API. To make research with
GitHub data approachable, we created the GHTorrent project, a scalable,
off-line mirror of all data offered through the GitHub API. In our lecture,
we will discuss the GHTorrent project in detail and present insights drawn
from using this dataset in various research works.

15

Scalable Model Analysis

Jaco van de Pol

University of Twente, Enschede, The Netherlands
J.C.vandePol@utwente.nl

Abstract

Software is a complex product. This holds already for its static struc-
ture, but even more so for its dynamic behaviour. When considering Big
Software on the Run, the role of models is changing fast: instead of using
them as a blueprint (like engineers) we now use models to understand run-
ning software (like biologists). More extremely, we are now using machine
learning to obtain models of complex software systems automatically.
However, adapting a classic motto, we should “spend more time on the
analysis of models, than on collecting logs, and learning and visualising
models” [1].

We will discuss algorithms and tools for studying models of the dy-
namic behaviour of systems. Since their complex behaviour is essentially
modeled as a giant graph, we will review various high performance graph
algorithms. In particular, we will cover LTL as a logic to specify prop-
erties of system runs, and symbolic and multi-core model checking as
the scalable means to analyse large models. We will illustrate this with
Petri Nets modelling software systems, and timed automata modelling
biological systems.

References

1. Variation on ”Spend more time working on code that analyzes the meaning of met-
rics, than code that collects, moves, stores and displays metrics - Adrian Cockcrof”,
cited by H. Hartmann in Communications of the ACM 59(7), July 2016

16

Reliable Concurrent Software

Marieke Huisman

University of Twente, Enschede, the Netherlands
M.Huisman@utwente.nl

Abstract

Concurrent software is inherently error-prone, due to the possible inter-
actions and subtle interplays between the parallel computations. As a re-
sult, error prediction and tracing the sources of errors often is difficult. In
particular, rerunning an execution with exactly the same input might not
lead to the same error. To improve this situation, we need techniques that
can provide guarantees about the behaviour of a concurrent program. In
this lecture, we discuss an approach based on program annotations. The
program annotations describe locally what part of the memory are af-
fected by a thread, and what the expected behaviour of a thread is. From
the local program annotations, conclusions can be drawn about the global
behaviour of a concurrent application. In this lecture, we discuss various
techniques to verify such annotations. If a high-correctness guarantee is
needed, static program verification techniques can be used. However, in
many cases, checking at run-time that the annotations are not violated is
sufficient. We discuss both approaches, and we show in particular what
are the challenges to use them in a concurrent setting.

17

How NOT to Analyze Your Release Process

Bram Adams

Ecole Polytechnique de Montréal Montreal, Canada
bram.adams@polymtl.ca

Abstract

The release engineering process is the process that brings high quality
code changes from a developer’s workspace to the end user, encompass-
ing code change integration, continuous integration, build system spec-
ifications, infrastructure-as-code, deployment and release. Recent prac-
tices of continuous delivery, which bring new content to the end user in
days or hours rather than months or years, require companies to closely
monitor the progress of their release engineering process by mining the
repositories involved in each phase, such as their version control system,
bug/reviewing repositories and deployment logs. This tutorial presents
the six major phases of the release engineering pipeline, the main reposi-
tories that are available for analysis in each phase, and three families of
mistakes that could invalidate empirical analysis of the release process.
Even if you are not working on release engineering, the mistakes discussed
in this tutorial can impact your research results as well!

For more background: http://mcis.polymtl.ca/publications/2016/
fose.pdf

18

Software Analysis: Anonymity and
Cryptography for Privacy

Zekeriya Erkin

Cyber Security Group
Delft University of Technology, Delft, The Netherlands

z.erkin@tudelft.nl

Abstract

Validation in a big software system can be managed by dynamically
analysing its behaviour. A software system in use occasionally reports
information to developers about its status in the form of event logs. De-
velopers use these information to detect flaws in the software and to im-
prove its performance with the help of process mining techniques. Process
mining generates process models from the collected events or checks the
conformance of these events with an existing process model to identify
flaws in the software. Algorithms in process mining to discover such pro-
cess models rely on software behaviour through real event logs and indeed
very useful for software validation. However, the existence of some sensi-
tive information in the collected logs may become a threat for the privacy
of users as seen in practice. In this talk, we present privacy enhancing tech-
nologies (PETs) for privacy-preserving algorithms for software modelling.
We focus on different approaches, namely anonymization techniques and
deploying advanced cryptographic tools such as homomorphic encryption
for the protection of sensitive data in logs during software analysis. As a
very new field of research, we introduce a number of challenges yet to be
solved and discuss different aspects of the challenge in terms of level of
privacy, utility and overhead introduced by deploying PETs.

19

Part II

Posters

A Cross-Organizational Process Mining
Framework

Ü. Aksu, D.M.M. Schunselaar, H.A. Reijers

Vrije Universiteit Amsterdam, The Netherlands

Abstract

Software vendors offer various software products to large numbers of en-
terprises to support their organization, in particular Enterprise Resource
Planning (ERP) software. Each of these enterprises use the same prod-
uct for similar goals, albeit with different processes and configurations.
Therefore, software vendors want to obtain insights into how the enter-
prises use the software product, what the differences are in usage between
enterprises, and the reasons behind these differences. Cross-organizational
process mining is a possible solution to address these needs, as it aims at
comparing enterprises based on their behavior.

However, current cross-organizational process mining approaches use
text matching techniques to relate terms between enterprises to find out
differences in usage. This might cause inaccurate comparisons, because
the same term can have different semantics across enterprises. For in-
stance, a bank and a library can use the same term, loan, which carries
different meanings for each of them. Therefore, in this research, we present
a novel Cross-Organizational Process Mining Framework which takes as
input, besides event logs, the semantics in an enterprise by means of a
Business Semantics. The Business Semantic comprises of terms and their
meaning in the enterprise. For a fair comparison between enterprises, our
framework takes the information reflecting characteristics of the enter-
prise to determine if two enterprises are comparable. Within the frame-
work, one is able to create a catalog of performance metrics to analyze
the enterprises usage of a software product. In addition, the framework
can monitor the (positive) effects of changes on processes using the cata-
log. An enterprise operating in a similar context might also benefit from
the same changes. To accommodate these improvement suggestions, the
framework creates an improvement catalog of observed changes.

Keywords: Cross-Organizational Process Mining

23

Taming the Herd:
Statistical Analysis of Large Sets of Models

Önder Babur

Eindhoven University of Technology, The Netherlands
o.babur@tue.nl

Abstract. Many applications in Model-Driven Engineering involve pro-
cessing multiple models, e.g. for comparing and merging of model vari-
ants into a common domain model. Despite many sophisticated tech-
niques for model comparison, little attention has been given to the initial
data analysis and filtering activities. These are hard to ignore especially
in the case of a large dataset, possibly with outliers and sub-groupings.
We would like to develop a generic approach for model comparison and
analysis for large datasets; using techniques from information retrieval,
natural language processing and machine learning. We are implement-
ing our approach as an open framework and have so far evaluated it on
public datasets involving domain analysis, repository management and
model searching scenarios.

Statistical Analysis of Large Sets of Models

Model comparison is a fundamental operation in Model-Driven Engineer-
ing (MDE), used for tackling problems, such as model merging and ver-
sioning. Addressing the increasing size and complexity of models, many
techniques have been developed based on pairwise and ’deep’ comparison
of models. However, another problem emerges when there is a large set
(e.g., hundreds) of models to compare: the expensive pairwise techniques
become inadequate and rather more scalable techniques are required.

This aspect of model comparison has been addressed in our previous
work [1–3], noting the need for treating a large set of models holistically,
e.g., for getting an overview of the dataset and potential relations, such
as proximities, groups, and outliers. The proposed approach, i.e., model
clustering, is inspired by document indexing and clustering in IR, notably
Vector Space Model (VSM) with the major components of (1) a vector
representation of term frequencies in a document, (2) zones (e.g., ’author’
or ’title’), (3) weighting schemes, such as inverse document frequency
(idf), and zone weights, (4) Natural Language Processing (NLP) tech-
niques for handling compound terms and synonyms. The VSM allows
transforming each document into an n-dimensional vector, thus resulting

24

Önder Babur

in an m × n matrix for m documents. Over the VSM, document simi-
larity can be defined as the distance (e.g., Euclidean or Cosine) between
vectors. These can be used for identifying similar groups of documents in
the vector space.

We have applied this technique for models and developed a model
clustering framework. As input to our framework, we obtain a set of
models of same type, e.g. Ecore metamodels, UML class diagrams or
feature models. The major workflow steps are:

– Feature extraction: The approach starts with the metamodel-based
extraction of features from the models. The framework currently sup-
ports extracting typed identifiers of model elements (e.g., class or
attribute names), metrics (e.g., number of attributes for a class) and
an n-grams of those for capturing the structural relations between
model elements (e.g., a bigram for n = 2, encoding two classes with
an association in between) [4].

– Feature comparison and NLP techniques: The framework has sev-
eral parameters on (1) using NLP techniques(tokenization, synonym
checking, etc.) for comparing model identifiers, and (2) schemes for
comparing features (e.g., whether to consider the types of model el-
ements, or just ignoring them) and weighting features (e.g., whether
to weight classes more than attributes).

– Computing the VSM: Here each model, consisting of a set of features,
is compared against the maximal set of features collected from all
models. The result is a matrix, similar to the term frequency matrix
in IR, where each model is represented by a vector. Consequently, we
reduce the model similarity problem into a distance measurement of
the corresponding vectors.

– Distance measurement and clustering: The framework allows several
parameters for (1) distance measures among vectors (e.g., Euclidean
or Cosine), (2) different clustering algorithms, such as k-means and hi-
erarchical agglomerative clustering (HAC), and (3) further clustering-
specific parameters, such as linkage. The clusters in the dataset can
be automatically computed to be used directly e.g., for the purpose of
data selection and filtering. Also particularly for HAC, the resulting
dendrogram can be visualized and inspected for an insight into the
dataset.

References

1. Önder Babur, Loek Cleophas, Tom Verhoeff, and Mark van den Brand. Towards

25

Taming the Herd: Statistical Analysis of Large Sets of Models

statistical comparison and analysis of models. In Proc. of the 4th Int. Conf. on
Model-Driven Engineering and Software Development, pages 361–367, 2016.

2. Önder Babur, Loek Cleophas, and Mark van den Brand. Hierarchical clustering
of metamodels for comparative analysis and visualization. In Proc. of the 12th
European Conf. on Modelling Foundations and Applications, 2016, pages 2–18, 2016.

3. Önder Babur. Statistical analysis of large sets of models. In Proc. of the 31st
IEEE/ACM Int. Conf. on Automated Software Engineering, ASE 2016, pages 888–
891, New York, NY, USA, 2016. ACM.

4. Önder Babur and Loek Cleophas. Using n-grams for the automated clustering of
structural models. In Proc. of the 43rd Int. Conf. on Current Trends in Theory and
Practice of Computer Science. Accepted for publication, 2017.

26

Attribution Required: Stack Overflow Code
Snippets in GitHub Projects

Sebastian Baltes and Stephan Diehl

Software Engineering Group, University of Trier,Trier, Germany
research@sbaltes.com, diehl@uni-trier.de

Abstract

Stack Overflow (SO) is the largest Q&A website for developers, providing
a huge amount of copyable code snippets. Using these snippets raises
various maintenance and legal issues. The SO license requires attribution,
i.e., referencing the original question or answer, and requires derived work
to adopt the license. While there is a heated debate on SO’s license model
for code snippets and the required attribution, little is known about the
extent to which snippets are copied from SO without proper attribution.
This poster highlights issues resulting from careless usage of SO code
snippets and presents first results from an empirical study analyzing the
usage and attribution of such snippets.

27

Mining Software Process Lines

Fabian Rojas Blum

Computer Science Department
Universidad de Chile, Santiago, Chile

fblum@dcc.uchile.cl

1 Abstract

Software companies define their processes for planning and guiding projects.
However, as these projects usually have different characteristics (e.g.,
small vs. medium team size), it is often not possible to define one process
that fits all of them. For this reason they can define a Software Process
Line [1]: a base process that represents the common elements, along with
its potential variability. Specifying manually a SPrL is a time-consuming
and error-prone task. However, even tough it is more expensive than spec-
ifying one process, the SPrL can be adapted to specific project context,
minimizing the amount of extra work carried out by employees. As com-
panies keep some kind of records about previous or current executions of
their projects, this work proposes to use Process Mining [2] to discover a
software process line.

There is a plethora of existing process discovery algorithms [2]. Each
one of them has its own strengths and weaknesses. They produce pro-
cesses in many different notations but they all share a common input:
event log(s). Most of them are focused on discovering a single process.
One particular exception is the ETMc [3] algorithm which is part of the
Evolution Tree Miner framework. This framework works with the process
trees representation as it has advantages over others and can be trans-
lated to other notations too. This algorithm takes as input a collection
of event logs and discovers a configurable process tree which represents
all the behavior with one specific configuration for each log. Thus, a con-
figurable process tree contains different processes (similar to SPrL), but
only one for each log.

The number of different configurations or processes that the ETMc
discovers as a configurable process tree depends on the number of logs it
has as input. So, it is not possible to find different configurations when
only a single log is available, which could be the case of a software com-
pany trying to specify the processes they follow. Moreover, the ETMc
algorithm is in turn based on the ETMd which is a genetic algorithm to

28

Fabian Rojas Blum

find single processes. Someone who is trying to use the ETM frameworks
(as implemented in ProM the most widely used academic tool for pro-
cess mining) might face some difficulties. First, the ETM algorithms have
many different parameters which could confuse the user in case he or she
is not familiar with it. Second, it will probably take longer than other
approaches as it needs many generations to find an appropriate solution.
Finally, it is unlikely to find the same results if the algorithm is executed
more than once for the same log (even for small logs and with the default
ProM parameters).

As part of this work, the v-algorithm [4, 5] was implemented as a
ProM plugin. This algorithm is able to discover a SPrL from an event
log. For this task, the behavior of the log is extracted from the log taking
into account the number of relationships between each pair of activities.
After that it uses two cut-off thresholds to split the behavior in three.
The most frequent behavior is used to discover the common parts of the
process (base process). The second part of the behavior is used to discover
the variability. Finally, the least frequent part is discarded and for now
considered as noise. The base process is discovered using the α-algorithm
[2]. The variability is discovered using different rules to determine if an
activity should be considered as optional or as a variation of other activity.

The v-algorithm as previously described can discover a SPrL from
an event log that describes only the flow of activities. As it uses the
α-algorithm it entails the problems it has (e.g., the base process is not
always sound). Moreover, the defined rules are not general enough to
cope with more complex situations than originally envisaged. So, the α-
algorithm was replaced with several different approaches for the base
process. Inspired by the results of the ETMd (e.g., as it is based on
process trees it ensures to discover a sound model) we are working on
an algorithm that is able to discover a process tree. The idea is to first
create a very simple process (using the most frequent trace in a sequence
tree) and adjusting only the parts of the tree that need to be changed to
allow more of the seen behavior iteratively. This approach had interesting
results, specially when the models tend to be structured (as is usually the
case in software companies).

As the future work we are going to extend this “in construction algo-
rithm” to be able to produce a SPrL that is also capable to use additional
information that can be available in the log at event level (e.g., resource),
or case level (e.g., size of the project) for the definition of more complete
processes.

29

Mining Software Process Lines

References

1. Tomás Mart́ınez-Ruiz, Félix Garćıa, Mario Piattini, and J Munch. Modelling soft-
ware process variability: an empirical study. IET software, 5(2):172–187, 2011.

2. W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer Publishing Company, Incorporated, 1st edition,
2011.

3. Joos CAM Buijs, Boudewijn F van Dongen, and W. M. P. van der Aalst. Mining
configurable process models from collections of event logs. In Business Process
Management, pages 33–48. Springer, 2013.

4. Fabian Rojas Blum, Jocelyn Simmonds, and Maŕıa Cecilia Bastarrica. The v-
algorithm for discovering software process lines. Journal of Software: Evolution
and Process, 2016.

5. Fabian Rojas Blum, Jocelyn Simmonds, and Maŕıa Cecilia Bastarrica. Software pro-
cess line discovery. In Proceedings of the 2015 International Conference on Software
and System Process, pages 127–136. ACM, 2015.

30

The Smallest Software Particle

Robert Deckers, Patricia Lago, Wan Fokkink

Vrije Universiteit Amsterdam, the Netherlands

Introduction

The business success factors of software have changed from functionality
to quality properties (e.g., availability, security, sustainability) and de-
velopment qualities (e.g., time-to-market, development cost, project pre-
dictability). However, methods and tools for domain-specific languages
and model-driven development are still focused on the delivery of soft-
ware functionality instead of the guarantee of quality. We should treat
qualities as first class elements of a human-oriented (rather than system-
oriented) development methods and frameworks. The main subjects are
specification of quality, integrating and managing multiple quality do-
mains, and enabling automatic transformations between specifications in
those domains.

This research investigates a method and framework for integrating
domain-specific languages (DSL), building consistent specifications in those
languages, and transformations between those specifications. The focus
lies on quality properties (a.k.a. non-functional properties). Instead of
aiming for a complete system specification in source code, we suggest
that all involved persons can speak their own language and record de-
cisions in that language. A development method and framework should
support the transformation and synchronization between specifications
in different languages. Software development should be seen as the inte-
gration of decisions and domain knowledge and not as the realization of
executable source code.

People are more important than machines

Software development methods are focused too much on producing ex-
ecutable source code to feed a stupid machine. Instead, we should see
software development as an accumulation of decisions made by humans
with different knowledge, different opinions, and different stakes.

31

Robert Deckers, Patricia Lago, Wan Fokkink

No support for your language

Software development has become a large-scale industry that employs
people in many different areas of expertise and at multiple education lev-
els. These people each speak their own language with their idiom and
sometimes also their own grammar and syntax. The practice is however
that we still use (development) languages that are an aggregation of ma-
chine primitives. These languages have dominated software development
since the beginning. For example, BPMN and Java have still the same
primitives as FORTRAN. The resulting disadvantage is that in many
cases people have to transform the mental concepts of their own knowl-
edge domain into machine-oriented concepts. A development process must
enable people to communicate and reason in their own language.

An inconsistent view of a consistent world

Tools and methods, each with their own notations and artefacts, are al-
ready available and used for some of the domains in the development
process. Although these tools overlap in the concepts they use and have
interdependencies, they are mostly not integrated in a tool chain. For
example, a requirements engineer uses a requirements management tool
and a tester uses a test tool. Although a test tool might allow you to refer
to requirements, there is typically no support to guard the consistency
between the requirements and the tests. Development methods and tools
must help guarding the consistency of all work products in the develop-
ment process.

Quality matters, but is hardly covered

In the early days of software development, a computer with software of-
fered functionality that wasnt possible before. Nowadays, functionality
of software is unique only for a short time and soon offered by more
suppliers. The business success factor of software has changed to qual-
ity attributes like ease of use, availability, security, and sustainability,
and to development qualities like time-to-market, development cost, or
project predictability. In spite of that, development methods and tools
are still focused on the delivery of software functionality instead of the
guarantee of quality. There are hardly any engineering methods for qual-
ity properties and quality is often not specified at all. A development
method/framework should enable the engineering of quality.

Because needed quality is hardly specified and not clear to everyone
involved, the quality properties of developed software are determined by

32

The Smallest Software Particle

personal beliefs and experience of the developers. This results in incon-
sistent quality throughout a system and its development. Because quality
is not specified explicitly, it cannot be proven, guaranteed, or engineered.
A development method must support the engineering of quality. This in-
cludes its specification, its realization, and the trade-offs between different
qualities.

Waste of knowledge

A developed software system is the result of a series of development deci-
sions. Making good decisions costs significant time and money. Therefore,
the reuse of a good decision in another context increases the return on
investment of that decision. The benefits are potentially the highest if
the reuse is automated (when applicable of course). Automation of de-
cisions can be divided in two categories. The first category is the reuse
of elements that capture the result of the decision. Those elements can
be part of the working system like a GUI library, a DBMS, or a rule
engine. The second category is to automatically reuse decisions via trans-
formations between development products, which reuse the decision each
time the transformation is executed. Development methods must support
the reuse and automation of any decision that can be made in a systems
life-time: from idea, to design, to test, usage, and system deprecation.

Exploit and integrate knowledge

A formalism based on human thinking concepts instead of machine prim-
itives should be the basis for a systems lifecycle that does not suffer from
the issues stated in the previous section. Earlier literature research has
shown that many partial elements already exist, but no integral solution
seems to be available.

Integral specification of quality

There are standards like ISO25010 that define a limited set of quality
attributes to address quality properties. ISO25010 however, does not help
in making specifications for those properties, nor in building a complete
and consistent specification of the design problem, the development, or
the system itself. The research result should contain requirements and
specifications for a method and framework that enable integration and
transformation of specifications of quality via DSLs and inter-domain

33

Robert Deckers, Patricia Lago, Wan Fokkink

rules. The research result must also contain examples of specifications of
quality and explain how quality attributes can be added to the framework.
The result should ideally provide a method for specifying DSLs for any
domain.

Extend MDD to anything formal

MDD approaches range from meta-modeling tools and meta-languages in
which you build your own DSL and transformations (e.g., MetaEdit+,
MPS), to more 4GL like platforms with a predefined modeling language
and predefined application architecture (e.g., Mendix, Thinkwise). The
models address mostly the application domain, data structure, and/or
software functionality. Other system properties or stakeholder concerns
are hardly modeled or even configurable. The result is that software sys-
tems built with such an MDD approach have fixed and implicit qual-
ity properties. This might be okay for some cases, but variable quality
and trade-offs between quality attributes are desirable when an MDD
approach aims at a large application domain. Also, quality should be pre-
dictable and explicitly known in many cases, for example when legislation
demands it. The research result should contain requirements and speci-
fications of how a model of a quality can be automatically transformed
into software specifications and/or software development specifications.
The result should also show examples of such a transformation.

A method based on multiple formalisms

Any specification, formal or informal, can only be (partially) understood if
the language in which the specification is stated, is (partially) understood.
If a specification must be processed by a machine, then that specification
must be formal for at least the part that must be processed. Otherwise, a
machine can simply not parse it. Some well-known formalisms exist that
are used for specification languages, like Petri Nets, state machines, pro-
cess algebra, set theory, and predicate logic. These mathematical mech-
anisms are applied in various specification languages that allow formal
specification of software structures and software behavior. The idea is
that a useful formalism for the specification of any quality is based on
any of the above mentioned formalisms combined with a method to give
clear semantics to the terms/words in a DSL. The research result should
explain the basic formalism and show how it can be used for specifications
of qualities that are made by a human and processed by a machine. It

34

The Smallest Software Particle

should also explain how a development language and method could be
formalized gradually.

The targeted result

The core of this research is to investigate what are the ingredients for a
method and framework that enables the guarantee of quality properties
of a software system and its development. The targeted research result
is threefold: a method (and/or requirements for a method), for defin-
ing DSLs and specifications for quality attribute and their integration, a
framework for specifying and performing transformations between DSLs,
and complete examples for a set of chosen quality attributes. The research
result should also contain a complete example in which several qualities
are specified via DSLs and integrated via MDD techniques.

35

Designing Optimal Runtime Architectures for
Enterprise Applications on Multi-Tenant

Heterogeneous Clouds

Siamak Farshidi, Slinger Jansen

Department of Information and Computing Sciences
Utrecht University, Utrecht, the Netherlands

{s.farshidi, slinger.jansen}@uu.nl

Abstract. Producing an enterprise application, which deploys in a multi-
tenant heterogeneous cloud, faces with many architectural challenges as
well as security, scalability, manageability, performance, maintainability,
and etc. Therefore, choosing an appropriate runtime architecture that
meets all requirements, is a key part of designing an enterprise applica-
tion. This paper provides an overview of a set of research methods that
focus on optimization of runtime architecture of enterprise applications
that are deployed in multi-tenant heterogeneous cloud ecosystems. In
other words, this research aims to create a set of decision support tools
and strategies to find an optimum pattern for each architectural aspect
of enterprise applications. Furthermore, the research is directed towards
identifying the appropriate deployments scenario in multi-tenant hetero-
geneous clouds, based on their requirements and constraints.

Keywords: architectural patterns; multi-tenancy; heterogeneous cloud
ecosystems; multi-criteria decision maker; deployment scenario

1 Introduction

Enterprise applications are complex, scalable, distributed, service-based,
and mission-critical business applications. Nowadays, most of these ap-
plications are deployed in the cloud, a model for enabling convenient,
on-demand network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction [1].

Designing and developing such highly complex applications means
satisfying segregate criteria just as constraints, functional requirements,
and quality attributes. Moreover, every architectural and developmental
decision to fulfill each of these criteria affects many other requirements

36

Siamak Farshidi, Slinger Jansen

and the failure to meet any of these requirements can mean the failure of
the entire project.

An ongoing growing influence of cloud computing and Software-as-a-
Service (SaaS) can be observed in the enterprise application domain [2].
One of the key features of SaaS is the ability to share computing resources
in offering a software product to different customers. To benefit from this
ability, the architecture of SaaS products should cater to the sharing of
software instances and databases. A popular architectural style for achiev-
ing this is known as Multi-Tenancy, which is a property of a system where
multiple customers, so-called tenants, transparently share the system’s re-
sources, such as services, applications, databases, or hardware, with the
aim of lowering costs, while still being able to exclusively configure the
system to the needs of the tenant [3].

The AMUSE research project is an academic collaboration between
Utrecht University, Free University of Amsterdam, and AFAS Software to
address software composition, configuration, deployment and monitoring
challenges on heterogeneous cloud ecosystems through ontological enter-
prise modeling. In the project, the correlation between software models
and resource requirements will be studied for finding optimal configura-
tion and deployment on heterogeneous clouds. In other words, the main
goal of the AMUSE project is improving scalability, maintainability, and
performance of enterprise applications, that lead to reducing the cost of
implementation, deployment, and maintenance of these type of applica-
tions.

2 Problem Statement and Proposed Contributions

Software Producing Organizations, such as open source and commercial
organizations producing mass-market software, were increasingly engi-
neering Very Large Software Systems. This presents many challenges like
managing large service configurations, maintaining end-user variability,
deployment on heterogeneous cloud ecosystems, managing system secu-
rity, finding optimum way of storing and retrieving data, and handling
complex errors.

The research methods that have to be addressed, when we talk about
finding an optimum runtime architecture selection for enterprise appli-
cations on multi-tenant heterogeneous clouds, are related to different ar-
chitectural aspects of enterprise applications. These characteristics in-
cluding data store model, software architecture pattern, multi-tenant ar-
chitecture, and deployment scenario which could be specified based on

37

Optimal Runtime Architectures

multiple criteria such as constraints, functional requirements, and quality
attributes of each case studies.

2.1 Research Methods

From the problem and objective statements, the following research meth-
ods are derived.

Identify constraints, requirements, and metrics Various studies
have argued that requirement analysis besides defining user and techno-
logical constraints are critical to succeed in producing a business applica-
tion [3]. Moreover, one of the causes of project failures is the inconsistency
of requirements, leading to unnecessary efforts, and can interfere with the
performance of the final software product. Next, quality metrics need to
be defined, because without any evaluation metrics we are facing with an
uncertain level of quality in the finished product. Therefore, finding a set
of functional requirements, quality attributes, and technological plus user
constraints in different architectural aspects of enterprise applications, in
addition to pre-check their consistency are essential tasks in the prior
phase of this research.

Selection of suitable data storage model One important part of
dealing with data is figuring out how and where to store it. A data stor-
age model is a specification describing how a database is structured and
used. Several data storage models have been suggested such as relational,
object-oriented, graph-based, key-value, and so on. Thus, assigning an
optimum set of storage models to the very large software system is not
a straightforward decision, especially when realizing that the data stor-
age requirements of enterprise applications significantly differ from other
types of applications like Facebook or Etsy, for example. Ultimately, se-
lecting the best-suited data store model has a huge impact on different
classes of quality attributes like runtime, non-runtime, architecture, non-
software, etc.

Specifying the optimum software architecture pattern Software
Architecture comprises a set of decisions according to many factors in
a wide range of software development, and each of these decisions has
a considerable impact on the overall success of the enterprise applica-
tion [4]. The optimum software architecture can decrease the business
risks associated with building a software product, and make the system

38

Siamak Farshidi, Slinger Jansen

implementation and testing more traceable as well as increase the level
of quality attributes. In contrast, inappropriate software architecture de-
cisions create inefficient software in terms of cost and time, and it could
be lead to real disaster for software-producing organizations. Software ar-
chitecture styles, such as layered, object-oriented, message-based, CQRS,
Microservices, and etc., are a proven reusable solution for well-known
problems and contains a set of rules, constraints, and patterns of how
to build an application based on its domain. Therefore, an appropriate
architecture style can improve partitioning and promotes design reuse by
providing solutions to frequently recurring problems [4].

Proposing appropriate multi-tenant architectures Multi-tenancy
for enterprise applications reduces the overall cost of maintenance be-
cause multiple customers share application instances and data instances,
so the total number of instances running will be much lower than in a
single-tenant environment. Moreover, Multi-tenancy facilitates the devel-
opment of enterprise applications, but practitioners will be faced with ex-
tra challenges in the implementation phase, like performance, scalability,
security and re-engineering the current application. In addition, software
architects struggle to choose adequate architectural styles for multi-tenant
enterprise applications. Bad choices lead to poor performance, low scal-
ability, limited flexibility, and obstruct software evolution [3]. Moreover,
in the case of heterogeneous clouds which enable users by their variety
of options, it is an essential task to find the optimum multi-tenant archi-
tecture for enterprise applications. Therefore, finding the most suitable
multi-tenant architecture is crucial, because the architecture expresses
a fundamental structural organization schema for a provider’s software
system. However, choosing the best solution is a complex task. Account-
ing for all the challenges and benefits complicates the decision process
considerably.

Choosing optimal deployment scenario Vertical scaling, or scaling
the infrastructure, is an elementary method to increase the computational
capacity. In the era of the legacy system, this task required software ven-
dors to physically purchase more hardware resources. Nowadays cloud
computing combines several existing technologies, as offering resources,
to form a new computing service to facilitate the emergence of a cen-
tral new characteristic of cloud computing as it allows to dynamically
and rapidly scale resources based on the actual user demand. In addi-
tion, cloud providers offer a plethora of hosting products, and the impact

39

Optimal Runtime Architectures

of each product on the performance of an enterprise application is diffi-
cult to predict. Moreover, many cloud environments impose restrictions
to deployed applications, such as disallowing modifying the filesystem or
opening a range of network ports. Furthermore, the cloud ecosystem suf-
fers from a lack of standardization and as a result, differences in cloud
provider services, subsequently creating a heterogeneous environment [5].
Thus, specifying a cloud provider that covers all requirements, including
functional and non-functional requirements, and satisfies all constraints
is extremely challenging and of vital essence to the end product.

2.2 Potential contributions

The results of four first research methods have an impact on the early
decisions of enterprise application companies because they can correctly
choose the appropriate runtime architecture that satisfies their require-
ments and constraints. Moreover, by using evaluation metrics practition-
ers can measure the quality of their currents product. After choosing op-
timal runtime architecture, organizations can implement their enterprise
application in a high level of trust based on their technological and user
constraints, functional requirements, quality attributes, and own most
important consideration. The final deliverable of fifth methods will be
a method that allows for automated (simultaneous) multi-platform de-
ployment without being dependent on a middleware that would result in
vendor lock-in. To sum up, this research will make a huge contribution
to Software Producing Organizations through finding optimum runtime
architecture for enterprise applications, because an appropriate runtime
architecture can reduce the business risks associated with building a tech-
nical solution, and make the system implementation and testing more
traceable as well as achieve higher Quality Attributes. Furthermore, this
research will be added empirically evaluated knowledge, and practitioners,
from third parties and software product companies, can use the research
methods as a starting point for their situation or as a guide throughout
the entire process.

3 Proposed Methods and Current Progress

Decision analysis is a logical procedure for the balancing of factors that
influence the decision. The procedure incorporates uncertainties, values,
and preferences in a basic structure that models the decision. Typically,
it includes technical, marketing, competitive, and environmental factors.

40

Siamak Farshidi, Slinger Jansen

Fig. 1: an example of AHP

41

Optimal Runtime Architectures

The essence of the procedure is the construction of a structural model
of the decision in a form suitable for computation and manipulation [6].
Decision analysis addresses a decision problem that arises in many in-
dustries and business activities in which from a set of possible solutions
one must be chosen. The same type of problem is stated in the problem
statements of this research.

Identify constraints, requirements, and metrics Due to specify
functional requirements, quality attributes, evaluation metrics, and scope
of each proposed research method, a structured literature study based on
guidelines of [7] besides variety interviews with domain experts will be
carried out. In the AMUSE project we have unlimited access to technical
documentation, resources, and experts at AFAS software company, which
is a well-known ERP software company in the Netherlands, so we can also
use their current product, which titled Next profit, as our immediate case
study and source of primary data.

Selection of suitable data storage model A literature review is our
major approach for data collection in this research. Our literature re-
view aims at three specific aspects: commonly used data storage model
at present, methods of selecting data storage model and research articles
on specific data storage model. For this purpose, first, a deep compari-
son will be done between SQL and NoSQL databases. Multiple criteria
are to be examined such as scalability, performance, consistency, security,
analytical capabilities and fault-tolerance mechanisms. Second, the ten
major types of database models through their twenty-eight cutting edge
product candidates will be defined and compared. Multi-Criteria Decision
Making Methods like Weighted Product Model, Analytic Hierarchy Pro-
cess, or other available methods besides expert evaluations could be used
in order to select the best-fitted data storage model based on functional
and non-functional requirements of each case studies. AHP can handle
this problem well, because weighing the relative importance of the deci-
sion criteria, like quality attributes, is an extensive process within AHP.
This is an important aspect because the values of these weights could be
assigned by experts in a case study for the decision criteria. These weights
eventually result in the best data storage model for that case study. Fig. 1
illustrates an example of AHP method.

Specifying the optimum software architecture pattern Litera-
ture review in this research method aims at three specific perspectives:

42

Siamak Farshidi, Slinger Jansen

Fig. 2: General architecture styles in category and evaluation [4]

43

Optimal Runtime Architectures

frequently used software architecture styles at present, methods of com-
paring architecture patterns, and analysis articles on specific architecture
patterns. In order to select architecture styles correctly and precisely all
existing information related to the project should be considered; there-
fore, it is a multi-criteria decision-making problem. However, the collected
information may interact with each other in some cases, which makes it
difficult to select the best architecture style. In this way, making use of
a decision support system which is able to consider not only different
criteria but also the interaction among them is a solution to solve the
problem in a more disciplined way which could provide software archi-
tects with most suitable results for the domain. Decision Support Systems
such as Fuzzy Theory, Case-Based Reasoning (CBR), Weighted Product
Model (WPM), or other available methods could be used to specifying
the optimum software architecture pattern. In addition, multiple expert
interviews will be conducted to find out practitioners experiences and
evaluations. Fig. 2 shows a sample of expert evaluation which could be
used to weight the proposed architectural patterns in AHP.

Finding appropriate multi-tenant architecture In order to find the
currently most use multi-tenant architecture for enterprise applications,
a structured literature study based on guidelines of [7] besides variety
interviews with domain experts will be carried out. After that, based on
prior found criteria, such as functional requirements, quality attributes,
technical limitation, and user constraints, this problem will be converted
a multi-criteria decision-making problem. Therefore, Multi-Criteria Deci-
sion Making Methods like Weighted Product Model, Analytic Hierarchy
Process, Fuzzy Theory, or other available methods, besides interviewing
with domain expert could be used in order to select the best fitted multi-
tenant architecture for different case studies.

Choosing optimal deployment scenario The multi-cloud paradigm
optimizes to decrease costs and optimizing quality by leveraging multiple
cloud providers simultaneously. With cloud providers not standardizing
anytime soon, one solution to decrease migration costs is by developing a
multi-cloud broker that is able to deploy an application to multiple cloud
providers. In addition, the mere fact that multiple cloud providers are now
available for use adds the question of where to deploy a software applica-
tion. This research, therefore, proposes a method that can automatically
select, configure, and deploy an application within this highly heteroge-
neous cloud environment. Modeling both the application and the cloud

44

Siamak Farshidi, Slinger Jansen

environment could be achieved through combining the modeling language
TOSCA [8] and feature models. Moreover, by adding user-defined con-
straints such as costs and hardware configurations, it becomes possible to
select an optimal cloud provider for each application component. Finally,
the generated deployment scenario is then automatically deployed to the
appropriated cloud providers.

Acknowledgment

This research was supported by the NWO AMUSE project (628.006.001):
a collaboration between Utrecht University, Free University of Amster-
dam, and AFAS Software in the Netherlands.

References

1. P. Mell and T. Grance. Sp 800-145. the nist definition of cloud computing. technical
report. nist. gaithersburg, md, united states, 2011.

2. R. Walters. The cloud challenge: Realising the benefits without increasing risk.
Computer Fraud & Security, 2012:5–12, 2012.

3. S. Jansen J. Kabbedijk. Variability in multi-tenant environments: Architectural
design patterns from industry. In O. De Troyer, C. Bauzer Medeiros, R. Billen, P.
Hallot, A. Simitsis, & H. Van Mingroot (Eds.), Advances in conceptual modeling.
recent developments and new directions, pages 151–160. Springer Berlin, Heidelberg,
2014.

4. Microsoft. Microsoft application architecture guide, 2nd edition. http://msdn.

microsoft.com/enus/library/ff650706.aspx. [Online; accessed 06-Aug-2016].
5. P. Eads S. Crago, K. Dunn. Heterogeneous cloud computing. cluster computing

(cluster). In 2011 IEEE International Conference on, pages 378–385, 2011.
6. R. Howard. Decision analysis: Applied decision theory. In In Proceedings of the

fourth international conference on operations research, pages 55–72, 1966.
7. S. Charters B.A. Kitchenham. Guidelines for performing systematic literature re-

views in software engineering. In Technical Report EBSE-2007-01, School of Com-
puter Science and Mathematics, Keele University, 2007.

8. OASIS. Topology and orchestration specification for cloud applications (tosca) ver-
sion 1.0, committee specification 01. http://docs.oasis-open.org/tosca/TOSCA/
v1.0/cs01/TOSCA-v1.0-cs01.html. [Online; accessed 06-Aug-2016].

45

Using Dynamic and Contextual Features to
Predict Issue Lifetime in GitHub Projects

Riivo Kikas, Marlon Dumas, Dietmar Pfahl

University of Tartu, Estonia
riivokik@ut.ee

Abstract

Open source projects usually rely on publicly accessible issue tracking
systems to manage unresolved bugs and development tasks. In contem-
porary open source code hosting sites, such as GitHub, the barrier for
contributing issue reports is minimal. Everyone can create an issue, but
only a limited set of stakeholders deal with resolving these issues. This
tension between the ease of creating issues and the limited resources of
the core project team leads to situations where issues receive sparse atten-
tion from the project team or do not even receive a preliminary screening
upon their creation.

Knowing when an issue will be closed is important from two view-
points. First, it has been found that timeliness is an important determi-
nant of contributor engagement and community contribution acceptance
in GitHub. If there is high uncertainty regarding the timeframe when the
development team will address a given issue, the stakeholder who submit-
ted it might be discouraged from making further contributions or even
from using the software product. Having an estimate of issue closing time
can help to reduce this uncertainty and provide greater transparency to
all stakeholders. Second, an estimate of issue closing time provides core
team members with a basis to prioritize their efforts and plan their con-
tributions.

Methods for predicting issue lifetime can help software project man-
agers to prioritize issues and allocate resources accordingly. In this setting,
this paper addresses the problem of predicting, at a given time point dur-
ing an issue’s lifetime, whether or not the issue in question will close after
a given time horizon, e.g. predicting if an issue that has been open for
one week will remain open one month after its creation.

The general problem of an issue (or bug) lifetime prediction has re-
ceived significant attention in the research literature. The focus of this
study differs from previous work in four respects. First, the bulk of pre-
vious work has focused on analyzing a small number of hand-picked

46

Riivo Kikas, Marlon Dumas, Dietmar Pfahl

projects. In contrast, this work studies this prediction problem based on
a large sample of projects hosted on GitHub. Second, most previous work
has focused on exploiting static features, i.e. characteristics extracted for
a given snapshot of an issue – typically issue creation time. However, dur-
ing its lifetime, an issue typically receives comments from various stake-
holders, which may carry valuable insights into its perceived priority and
difficulty and may thus be exploited to update lifetime predictions. The
present study combines static features available at issue creation time,
with dynamic features, i.e. features that evolve throughout an issue’s life-
time. Third, previous approaches focus on predicting lifetime based on
characteristics of the issue itself. In contrast, the present study combines
characteristics of the issue itself with contextual information, such as the
overall state of the project or recent development activity in the project.
Finally, most previous studies do not employ temporal splits to construct
prediction models. In other words, models are trained on future data and
then evaluated on past data. In this study, we construct models predic-
tively using strict temporal splits such that predictions are always made
based only on past data, which reflects how such predictive models would
be used in practice.

This work proposes an approach for training and evaluating issue
lifetime prediction models at different points in time and highlights the
importance of dynamic and contextual features in such predictive models.
The results show that dynamic and contextual features complement the
predictive power of static ones, particularly for long-term predictions. In
particular, dynamic features observed for longer periods enhance preci-
sion up to 33% when estimating whether an issue will be closed in the
upcoming year.

47

Reproducible and Reusable Research Assets
Management

Armel Lefebvre, Marco Spruit, Sjaak Brinkkemper

Department of Information and Computing Sciences
Princetonplein 5, De Uithof, 3584 CC Utrecht

{a.e.j.lefebvre, m.r.spruit, s.brinkkemper}@uu.nl

Introduction

In the recent years the interest in reusing published research assets has
increased tremendously. Building upon the view of freely available scholar
publications (i.e. open access), Open science goes one step further by
promoting research data reuse and sharing among academics, the industry
and citizens.

At the same time, there is an inability to inspect in greater details pa-
pers relying on intensive data analysis. This led to what one might call a
reproducibility crisis (Peng, 2015). The reproducible research movement
asserted that there is frequently no code or data available to check the
claims made by the authors or to reuse datasets for answering new re-
search questions [6]. Hence, the demand for reproducible results and the
availability of data and code is becoming more and more anchored in how
research outputs and projects are assessed by journals, funding agencies
and also universities, which are establishing research data management
policies.

Meanwhile, researchers are facing greater challenges to get meaning-
ful insights from large and complex datasets to answer their research
questions. The requirement to properly trace and assess the interactions
between software, data and hardware are presenting supplementary bur-
dens for scientists [4]. For instance, important issues are faced to anno-
tate datasets, identify which parameters were used during an analysis
and which algorithms or software packages were involved. Furthermore,
scientists might experience some difficulties in localizing relevant data af-
ter the departure of the data owner responsible for the experiment (e.g.
a PhD student). These challenges lead to the following research ques-
tion: “How can research assets be managed to ensure that computational
experiments are reusable and reproducible?”

48

Armel Lefebvre, Marco Spruit, Sjaak Brinkkemper

Method

We follow a Design Science Research method [3] to build socio-technical
artefacts to help researchers manage ongoing and published research data.
Two outcomes are expected. First, a multidimensional metadata model.
Second, a middleware implementing the structures, operations and con-
straints set by the model. We collect evidence and requirements through
literature reviews, interviews, surveys and a field study in bioinformat-
ics. We plan to collect further data through the middleware to adapt the
model and its implementation based on the analysis of log data.

Design Proposition

In metadata management, types of metadata are traditionally divided
into two or more categories such as the pair system metadata and user-
defined metadata. These taxonomies hold in a closed environment where
business information can be extracted consistently. Here, research asserts
are generated and/or processed in an open world with no single point
of truth. Hence, there is a need to support a wider range of, sometimes
unexpected, scenarios of computational experimentation, data complexity
and researchers’ goals (e.g. the whole pipeline to transfer data from a
sequencing facility to a laboratory then between a laboratory and a high
performance computing cluster).

This calls for a redefinition of how metadata is structured, extracted
and filtered for managing scientific data. New ways to integrate and
annotate data depending on a wide diversity of data sources started
with systems such as dataspaces, which were advocated by Franklin,
Halevy, & Maier [2]. To achieve the design and deployment of a scien-
tific data space, we build upon a multidimensional theory of information
called the Descriptive Theory of Information suggested by Boell & Cecez-
Kecmanovic [1]. The main challenges are the repurposing, extension of the
descriptive theory with relevant dimensions and facet of information for
research (meta)data management and representation of this model as a
multigraph supporting “on the fly” conversions to ontologies. This includ-
ing the constraints of reusability, reproducibility and even privacy in case
of sensitive data.

To conclude, we suggest a multidimensional metadata model and mid-
dleware to be able to dynamically structure research assets as a datas-
pace. The metadata model will assist researchers in their data steward
role, i.e. the management of research data by scientists themselves. The

49

Reproducible and Reusable Research Assets Management

middleware is a collection of artifacts that are implementing this meta-
data model. Both will be developed and evaluated in research labs.

References

1. Boell, S. K., & Cecez-Kecmanovic, D. (2015). What is Information Beyond
a Definition? In ICIS 2015 Proceedings (p. Paper 1363). Retrieved from
http://aisel.aisnet.org/icis2015/proceedings/ConferenceTheme/4/

2. Franklin, M., Halevy, A., & Maier, D. (2005). From databases to dataspaces: a
new abstraction for information management. ACM Sigmod Record, 34(4), 2733.
http://doi.org/10.1145/1107499.1107502

3. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Infor-
mation Systems Research. MIS Quarterly, 28(1), 75105.

4. Lefebvre, A., Spruit, M., & Omta, W. (2015). Towards reusability of computational
experiments Capturing and sharing Research Objects from knowledge discovery
processes. In Proceedings of the 7th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) (Vol.
1, pp. 456462).

5. Peng, R. D. (2011). Reproducible research in computational science. Science (New
York, N.Y.), 334(6060), 12267. http://doi.org/10.1126/science.1213847

6. Peng, R. D. (2015). The reproducibility crisis in science: A statistical counterattack.
Significance, 12(3), 3032. http://doi.org/10.1111/j.1740-9713.2015.00827.x

50

Resource Prediction for Applications Generated
From Enterprise Models

Gururaj Maddodi, Slinger Jansen, Rolf de Jong

Utrecht University, AFAS Software

Abstract

Performance is increasingly becoming important aspect of non-functional
requirements of a software application. This has become further impor-
tant as the software becomes more and more complex and they start to be
hosted on cloud environments instead of traditional on-premise servers.
On cloud platforms the application has to share resources with other run-
ning applications also. Many research works have focused on predicting
performance from representative modeling of software application. Arcelli
et al. [1] proposes a framework for automated generation of software mod-
els subject to continuous performance analysis and refactoring. Authors
in [2] make a survey of different approaches in performance prediction
using model-based approach. Becker et al. [3] use Palladio Component
Model (PCM) approach to parameterize resource usage of software.

Resource requirement prediction of a software application developed
using MDD approach requires gaining deep understanding of the domain-
specific language (DSL) that is used to describe the model of the software
to be generated. For each the elements of the DSL resource consumption
need to discovered, which can then lead to building resource profile of the
generated application from bottom-up. This along with the associated
parameters and relations between elements make it complicated to predict
resource requirement.

The research is conducted in an industrial setup. The case company is
AFAS Software who are developing an Ontological Enterprise Modeling
(OEM) language to describe operations of real-world enterprises. In this
context, the modeling DSL is the language that is going to be used for
describing models for software generation for an individual enterprise.
Though the OEM DSL is still under construction, the basic elements and
the relations are mostly defined.

One of the key design drivers in the development of NEXT is the fo-
cus on Command Query Responsibility Separation (CQRS) [4] distributed

51

Gururaj Maddodi, Slinger Jansen, Rolf de Jong

architecture. CQRS is an architectural pattern developed to support scal-
ability, and provides a practical solution to Brewers theorem [5] in a dis-
tributed system architecture. This pattern prescribes separation in client-
server communication between commands and queries, commands being
actions to modify the data while queries are the requests to access the
said data. The CQRS architecture can be combined with event sourcing
[4] concept, then we have an additional component called events which
propagate changes from command side to the query side. In AFAS context
the DSL is tightly linked to the CQRS architecture as domain-driven de-
sign (DDD) principles are used in generating the application. Using DDD,
meta-model elements of the NEXT DSL are grouped into so called aggre-
gates. Aggregates determine how database schema will be defined. Hence
it affects how commands, queries, and events are going to look like from
a given model.

In order to discover the resource requirements of NEXT DSL models,
we start from a bottom-up approach, i.e. use the meta-model elements
from which the models are built and associate resource metrics with them.
Here attributes associated with the meta-model elements and the rela-
tionships that can be formed between then also needs to be taken into
account when associating resource metrics. Several models with varying
complexity can be created. Then by subjecting the models to workload
and performance are traced. Since the workload of the NEXT consists
of commands and queries (due to CQRS architecture), by tracing the
application generation phase from the meta-model elements formation of
aggregates, commands, queries, and events can be known. Performance re-
sults will be in terms of resource utilized for each commands and queries.
By correlating the resource metrics for commands and queries to the
meta-model elements and their relations, resource requirements per meta-
model elements, attributes, and relations can be discovered.

References

1. D. Arcelli and V. Cortellessa. Assisting software designers to identify and solve
performance problems. In Proc. of the 1st International Workshop on Future of
Software Architecture Design Assistants, pages 1–6, 2015.

2. S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based performance
prediction in software development: A survey. IEEE Transactions on Software En-
gineering, 30(5):295–310, 2004.

3. S. Becker, H. Koziolek, and R. Reussner. Model-based performance prediction with
the palladio component model. In Proc. of the 6th international workshop on Soft-
ware and performance, pages 54–65, 2007.

4. G. Young. Cqrs and event sourcing. feb. 2010.

52

Resource Prediction for Applications Generated From Enterprise Models

5. S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. 33(2):51–59, 2002.

53

Flu-Now : Nowcasting Flu based on Product
Sales Time Series

Ioanna Miliou1, Salvatore Rinzivillo2, Giulio Rossetti2,
Dino Pedreschi1, Fosca Giannotti2

1 KDDLab, University of Pisa, {miliou, pedre}@di.unipi.it
2 KDDLab, ISTI-CNR, {name.surname}@isti.cnr.it

Abstract

Big Data offer nowadays the capability of creating a digital nervous sys-
tem of our society, enabling the measurement, monitoring and prediction
of various phenomena in quasi real time. But with that, comes the need
of more timely forecast, in other words nowcast of changes and events in
nearly real-time as well. The goal of nowcasting is to estimate up-to-date
values for a time series whose actual observations are available only with
a delay. Choi and Varian [1] introduced the term nowcasting to advocate
the tendency of web searches to correlate with various indicators, which
may reveal helpful for short term prediction. In the field of epidemiology,
it was showed in various works that search data from Google Flu Trends,
could help predict the incidence of influenza-like illnesses (ILI). But as
Lazer and al. notice [2], in February 2013, Google Flu Trends predicted
more than double the proportion of doctor visits for ILI than the Center
for Disease Control.

In this work we are studying the influenza time series, of cases from
2004/05 to 2014/2015 influenza season, from physicians and pediatricians
from all over Italy. We are interested to examine whether is possible to
use retail market data as a proxy for influenza prediction. Our dataset
consists of economic transactions collected by COOP, a system of Italian
consumers’ cooperatives which operates the largest supermarket chain in
Italy. The whole dataset contains retail market data in a time window
that goes from January 1st, 2007 to April, 27th 2014. First, we identi-
fied the products that have adoption trend similar to the influenza trend
with the help of an 1-nearest neighbor classifier that uses dynamic time
warping as the distance measure between time series. Based on these
products, we identified the customers that buy them during the influenza-
peak, since those individuals would have higher possibility to be either
infected or close to an infected individual. We extracted their most fre-
quent baskets during the peak using the Apriori algorithm, an algorithm

54

Authors Suppressed Due to Excessive Length

for frequent item set mining and association rule learning over transac-
tional databases, and we use those baskets-sentinels as control set for the
following year influenza peak. Monitoring the behavior of these baskets-
sentinels we are able to detect patterns similar to the ones of the previous
year’s influenza peak, and as a result obtain an alarm for the appearance
of the influenza.

Many lines of research remain open for future work, such as studying
whether the retail market data can manage to predict the influenza peak
even in particular cases such as the year 2009 non-seasonal H1N1 influenza
(flu) pandemic that peaked in October and then declined quickly to below
baseline levels by January.

References

1. Hyunyoung Choi and Hal Varian. Predicting the present with google trends. Tech-
nical Report, 2009.

2. David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. The parable
of google flu: Traps in big data analysis. Science Magazine, 343(6176):1203–1205,
2014.

55

Power-efficient quality-assuring decision
framework

Fahimeh Alizadeh Moghaddam1, Paola Grosso2, Patricia Lago3

1 S2 and SNE groups
VUA and UvA

Amsterdam, The Netherlands
f.alizadehmoghaddam@vu.nl

2 System and Network Engineering group (SNE)
University of Amsterdam (UvA)

Amsterdam, The Netherlands
p.grosso@uva.nl

3 Software and Services group (S2)
VU University Amsterdam (VUA)

Amsterdam, The Netherlands
p.lago@vu.nl

Keywords: power efficiency, quality assurance, decision framework

1 Abstract

Running software in cloud is very expensive in terms of energy costs
and environmental impacts. As [1] estimates, Google had up to 67M$
for electricity costs in 2008. Software as the initiator of power consump-
tion, involves different components of data centers, which are operational
implementations of cloud-based environments. Therefore, the achievable
quality of software, like performance and power efficiency, strongly de-
pends on the quality of the contributing components. This effect is even
clearer in case of distributed applications, when heavily relying on the
network infrastructure.

We see room for improvement in power efficiency of the software, while
still satisfying non-energy related quality requirements. This is because
from the data center providers perspective power efficiency needs to be
weighted against other quality requirements such as performance, relia-
bility and availability. This results in the deployment of large number of
devices in data centers, connected via multiple (including back-up) links,
whose average utilization rate is only around 30% [2].

Satisfying quality requirements of the software is not an easy and a
common task to perform in large-scale complex environments. The map-
ping between the application quality requirements and the available re-
sources is often done inefficiently, which results in low performance and

56

2 Fahimeh Alizadeh Moghaddam, Paola Grosso, Patricia Lago

high power consumption. We believe that by adjusting the network com-
ponent based on power efficiency purposes, we can achieve higher power
efficiencies in the application layer. In this work, we propose a decision
framework that lies between the application layer and the network in-
frastructure. It translates all pre-defined requirements to load scheduling
setups in the infrastructure in an efficient manner.

We make the software more intelligent by providing a clear image
of the underlying utilized resources and adapting the resources config-
urations according to the quality requirements in realtime. We adopt a
combination of three power saving approaches in the network layer to
provide power savings in the software layer: 1) Putting idle network de-
vices into sleeping mode, 2) Increasing number of idle network devices
by shaping the incoming traffic, and 3) Prioritizing the existing active
devices over the sleeping ones to carry the load.

Depending on the application quality requirements, our decision frame-
work is able to perform the best fitting scheduling task. It deploys one
or more of the aforementioned approaches to classify the applications in
a range from power sensitive to performance sensitive. We used linear
programming (LP) scheduling to formulate the application requirements
and power efficiency metrics in one objective function. We distinguish be-
tween the application requirements by their reflection on power efficiency
priorities:

– LP-v1: Semi power efficient Applications classified in this category
require maximization on the achievable performance of the application
while still providing power saving. They allow our decision framework
to make use of the three power saving approaches.

– LP-v2: Semi performance guaranteed Similar to LP-v1, applications
in this category prioritize power efficiency as much as non-energy re-
lated quality requirements. However, they are less greedy for utiliz-
ing the resources. Therefore, our decision framework can schedule the
upcoming load on idle sleeping devices, while there is still capacity
available in already active devices.

– LP-v3: Only performance guaranteed We take performance as an ex-
ample of non-energy related quality requirement of the application.
In this version, the application is performance-sensitive and can not
accept degradation in performance metric due to power-efficiency im-
provements.

– LP-v4: Only power efficient In this version the application focuses
the most on maximizing the power saving as such it is the most power

57

Power-efficient quality-assuring decision framework 3

sensitive version. Non-energy related quality requirements of the ap-
plication do not influence the resource utilization in the network.

Fig. 1 presents the architecture of our decision framework consisting
of three main modules: 1) Load scheduler at the center, which receives the
application quality requirements and profiled statistical data and provides
the resources scheduling setup accordingly, 2) Modification System, which
performs modifications to the resources configurations, and 3) Profiling
System that measures the statistical information periodically from the
underlying resources.

Fig. 1: Our decision framework consisting of the load scheduler, the mod-
ification system and the profiling system components

We implemented a number of experiments in the Mininet4 simula-
tion environment. We use the open-source POX control software5 and
the Gurobi Python optimizer6 as our controller and scheduler compo-
nents. To compare the behavior of our decision framework in presence of
different application requirements, we focus on two performance metrics:
Power consumption of the total data center infrastructure and Time to
complete (TTC), which is the time it takes for the application to send
predefined number of bytes to another host(in our case 38GB of data). To
evaluate our smart decision framework, we compare it against Smart SP,
an example decision framework. Smart SP does not follow any power effi-
cient approaches and no intelligence is provided to the application layer.
We run a one-one scenario in the infrastructure but we define different
quality requirements for the same application in each round of simulation.

4 http://mininet.org
5 http://www.noxrepo.org/pox/about-pox/
6 http://www.gurobi.com/

58

4 Fahimeh Alizadeh Moghaddam, Paola Grosso, Patricia Lago

Scalability of the decision framework is influenced by the quality re-
quirements the running application defines towards power efficiency. We
investigated the power saving provided by our decision framework in pres-
ence of four different power efficiency schemes in different network sizes.
The values derived from LP-v4 and Smart SP are considered as our base-
line, as they specify the minimum and the maximum power consumption
of the infrastructure. As Fig. 2 shows, in all three network sizes, we ob-
served that LP-v1 is the most power efficient variation that shows around
95% improvement, which means only 5% degradation from the optimum
power saving. LP-v2 with achieving 50% of maximum power saving out-
performs LP-v3 with achieving 45% of maximum power saving, which
provides higher performance for the running applications. It is interest-
ing to see that all the variations remain in the same range of power saving
for different network sizes.

20 45 80

Number of switches

0

20

40

60

80

100

D
e
g
ra

d
a
ti
o
n
 i
n
 p

o
w

e
r
sa

v
in

g
 (
%

)

LP-v1

LP-v2

LP-v3

Fig. 2: Degradation in power savings of three power saving schemes
namely, LP-v1, LP-v2 and LP-v3 in the three simulated network sizes.
LP-v4 and Smart SP are considered as the baselines for calculation of
power saving.

Fig. 3 shows the TTC measured from the applications running in the
hosts as function of the four application requirement schemes when run-
ning with maximum incoming load. LP-v1 and LP-v4 show a considerable
increase in TTC when the network size grows. Differently, LP-v2 and LP-
v3 appear to be more performance-focused and stable for different sizes
of the network.

Our decision framework empowers the cloud-based applications to
map their quality requirements to the optimum resources subset. Our
power efficiency schemes are designed for data center networks, in which
realtime and scalable scheduling is crucial. Our results show that two of
the variations (LP-v2 and LP-v3) remain stable in terms of power saving
and the TTC metrics, as the underlying infrastructure grows in size. Two

59

Power-efficient quality-assuring decision framework 5

20 45 80

Number of switches

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

Ti
m

e
 t
o
 c

o
m

p
le

te
 (
s)

Smart SP

LP-v1

LP-v2

LP-v3

LP-v4

Fig. 3: Time to complete for the four different power saving schemes in
the three simulated network sizes (38GB of data)

other (LP-v1 and LP-v4) provide the highest power savings and they are
suitable for delay-insensitive applications.

Acknowledgment

This work has been sponsored by the RAAK/MKB-project “Greening the
Cloud” and by the Dutch national program COMMIT. This work has
been partially submitted to the Network Softwarization (NetSoft2016)
conference.

References

1. Asfandyar Qureshi. Power-demand routing in massive geo-distributed systems. PhD
thesis, Massachusetts Institute of Technology, 2010.

2. Jie Liu, Feng Zhao, Xue Liu, and Wenbo He. Challenges towards elastic power
management in internet data centers. In Distributed Computing Systems Workshops,
2009. ICDCS Workshops’ 09. 29th IEEE International Conference on, pages 65–72.
IEEE, 2009.

60

Discovering Software Engineering Related Web
Resources and Technical Terms

Gao Sa

Nanyang Technological University

Abstract

A sheer number of techniques and web resources are available for software
engineering practices and that number continues to grow. Discovering
semantically similar or related technical terms and web resources offer the
opportunity to design appealing services to facilitate information retrieval
and information discovery.

In our work, we first extract technical terms and web resources from
community Q&A discussions, and propose a neural-language model based
approach to learn semantic representations of technical terms and web re-
sources in a joint low-dimensional vector space. Our approach maps tech-
nical terms and web resources to a semantic vector space based on only the
surrounding technical terms and web resources of a technical term (or web
resource) in a discussion thread, without the need of mining text content
of the discussion. We apply our approach to Stack Overflow data dump of
March 2016.Through both quantitative and qualitative analysis in three
exploratory tasks: clustering task, search tasks, and semantic reasoning
tasks, we show that the learned technical-term and web-resource vector
representations can capture the semantic relatedness of technical terms
and web resources, and they can be exploited to support various search
tasks and semantic reasoning tasks, by means of simple K-nearest neigh-
bor search and simple algebraic operations on the learned vector represen-
tations in the embedding space. Based on the semantic embedding space
of tag and URLs, we further propose an accurate URL auto link service to
automated recommend web resources to users. Web resources recommen-
dation can help developers reduce the burden to manually search the web
resources for SE related terms. In this work, we extract anchor texts and
corresponding web resources from community Q&A discussions, then we
incorporate the popularity feature and semantic similarity of context tags
and candidate web resources to automatically help user link the software
related technical terms to web resources.

61

Application of Genetic Algorithms for
Automated Crash Reproduction

Mozhan Soltani1 , Annibale Panichella2, and Arie van Deursen1

1 Delft University of Technology
m.soltani@tudelft.net,

Arie.vanDeursen@tudelft.net
2 University of Luxembourg
annibale.panichella@uni.lu

Abstract. Often the crash data that is available to software developers
is insufficient for debugging purposes. This issue negatively affects the
productivity of the developers when it comes to debugging. Therefore,
various automated techniques have been proposed which strive for using
the available crash data to reproduce the target crashes, and thereby,
derive useful hints regarding the location of the existing defects in the
source code. Despite the advances made in this area, there are still many
crash cases from well-known open-source projects that have not been
covered by the existing approaches. We propose to tackle this problem
by applying a novel fitness function which could be used to guide genetic
algorithms in search for an ideal test case that can trigger the target
crash. Our primary results show that application of this approach leads
to increased coverage of crash cases for the same open-source projects.

Keywords: Genetic Algorithms, Automated Crash Reproduction, Soft-
ware Testing, and Software Debugging

1 Introduction

Typically, the minimality of crash data that is reported to software de-
velopers leads to longer periods of time that it takes to produce fixes for
the reported crashes. Therefore, several automated techniques for crash
reproduction have been proposed that take the minimal data and derive
hints that can guide the developers for identifying the location of the
existing defects. However, the existing techniques [1, 2, 4–8, 10] impose
limitations which reduce their capabilities in covering a wider range of
crashes [9].

We propose to address automated crash reproduction by applying an
evolutionary approach that uses the crash stack data to search for an ideal
test case that can mimic a target crash. In this approach, we defined a
novel fitness function that guides the search process towards finding the

62

2 Automated Crash Reproduction via Genetic Algorithms

ideal test case. We implemented the fitness function as an extension of
EvoSuite [3], an evolutionary test generation framework, and evaluated it
on well-known crashes from the Apache Commons libraries. In this paper
we outline the definition of the fitness function and present the primary
results of the evaluations of our approach.

2 The Evolutionary Approach and Primary Results

We built our approach on top of EvoSuite [3], which is a search-based
test generation framework that can be used to maximize code coverage.
Thus, we defined a novel fitness function to guide the evolution of test
cases towards finding the ideal test case. Such test case must crash at the
same location as the original crash and produce a stack trace similar to
the original one. A standard stack trace in Java contains (i) the type of
the exception thrown, and (ii) the list of method frames being called at
the time of the crash. Therefore, our fitness function, shown in Equation
1, must consider the following conditions to guide the search: (i) the line
where the exception is thrown must be covered, (ii) the target exception
must be thrown, and (iii) the generated stack trace must be as similar to
the original one as possible.

f(t) = 3× ds(t) + 2× dexcept(t) + dtrace(t) (1)

In Equation 1, ds(t) denotes how far t is to execute the target statement;
dexcept(t) ∈ {0, 1} indicates whether the target exception is thrown or not;
and dtrace(t) measures the distance between the generated stack trace and
the expected trace.

For the line distance ds(t), we use the approach level and the branch
distance. The approach level measures the distance between the path of
the code executed by t and the target statement. The branch distance
scores how close t is to satisfy the branch condition for the branch on
which the target statement is directly control dependent. For the trace
distance dtrace(t), we define a new distance function as follows. Let S∗ =
{e∗1, . . . , e∗n} be the target stack trace to replicate, where e∗i = (C∗1 ,m

∗
1, l
∗
1)

is the i-th element in the trace composed by class name C∗i , method name
m∗i , and line number l∗i . Let S = {e1, . . . , ek} be the stack trace generated
when executing the test t. We define the distance between the expected
trace S∗ and the actual trace S as follows:

D(S∗, S) =

min{k,n}∑

i=1

ϕ (diff(e∗i , ei)) + | n− k | (2)

63

Automated Crash Reproduction via Genetic Algorithm 3

Table 1 in Appendix 2 compares our results with two state-of-the-art
methods, namely (i) STAR [2], and (ii) MuCrash [10]. The former uses
symbolic execution while the latter is based on mutation analysis. Our
results indicate that our approach can reproduce 8 out of 10 crashes.
Based on our manual check, all reproduced crashes are useful to fix the
bug. For six bugs, our prototype constantly replicates the crash in all 30
independent runs. For ACC-53, there are only two out of 30 runs where a
replication is not achieved. Comparing our results with those achieved by
STAR [2] and MuCrash [10], we observe that there are bugs that can be
reproduced by our technique and not by the alternative ones. The results
of our pilot study show the strength of evolutionary testing techniques,
and evolutionary test case generation tools in particular, with respect to
symbolic execution based on precondition analysis and mutation analysis.

References

1. S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making software failures reproducible
by preserving object states. In ECOOP 2008–Object-Oriented Programming, pages
542–565. Springer, 2008.

2. N. Chen and S. Kim. Star: Stack trace based automatic crash reproduction via
symbolic execution. IEEE Tr. on Sw. Eng., 41(2):198–220, 2015.

3. G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions on
Software Engineering, 39(2):276–291, Feb. 2013.

4. W. Jin and A. Orso. Bugredux: reproducing field failures for in-house debugging.
In Proceedings of the 34th International Conference on Software Engineering, pages
474–484. IEEE Press, 2012.

5. A. Leitner, A. Pretschner, S. Mori, B. Meyer, and M. Oriol. On the effectiveness of
test extraction without overhead. In International Conference on Software Testing
Verification and Validation (ICST), pages 416–425. IEEE, 2009.

6. S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously recording pro-
gram execution for deterministic replay debugging. In ACM SIGARCH Computer
Architecture News, volume 33, pages 284–295. IEEE Computer Society, 2005.

7. J. Rossler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea. Reconstructing core
dumps. In 2013 IEEE Sixth Int. Conf. on Software Testing, Verification and Val-
idation, pages 114–123. IEEE, 2013.

8. D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test factoring for java.
In Proceedings of the 20th IEEE/ACM international Conference on Automated
Software Engineering, pages 114–123. ACM, 2005.

9. M. Soltani, A. Panichella, and A. van Deursen. Evolutionary testing for crash
reproduction. In Proceedings of the 9th International Workshop on Search-Based
Software Testing, pages 1–4. ACM, 2016.

10. J. Xuan, X. Xie, and M. Monperrus. Crash reproduction via test case mutation:
Let existing test cases help. In ESEC/FSE, pages 910–913. ACM, 2015.

64

4 Automated Crash Reproduction via Genetic Algorithms

Appendix: Primary Evaluation Results

Table 1 shows the primary results of evaluating our approach on crash
cases, which were also used to assess two other recent techniques for crash
reproduction, STAR, and MuCrash.

Table 1: Detailed crash reproduction results

Bug ID
% Successful

STAR [2] MuCrash [10]
Replication

ACC-4 30/30 Yes Yes
ACC-28 30/30 Yes Yes
ACC-35 30/30 Yes Yes
ACC-48 30/30 Yes Yes
ACC-53 28/30 Yes No
ACC-70 30/30 No No
ACC-77 30/30 Yes No
ACC-104 0/30 Yes Yes
ACC-331 10/30 No Yes
ACC-377 0/30 No No

65

Variability Mining for Extractive Software
Product Line Engineering of Block-Based

Modeling Languages

David Wille

Institute of Software Engineering and Automotive Informatics
Technische Universität Braunschweig, Germany

Motivation

Nowadays, industry faces an increasing number of challenges regarding
the functionality, efficiency, and reliability of developed software. Com-
panies attempt to overcome these challenges by abstracting from the
concrete problems using a multitude of programming and modeling lan-
guages. Depending on the development domain, these languages and the
resulting degree of abstraction differs significantly. For instance, procedu-
ral programming languages or object-oriented programming languages,
such as C, C++, or Java, only allow to abstract from the underlying ex-
ecution hardware (i.e., the concrete memory position of variables), while,
in other domains, this abstraction is not sufficient to efficiently handle the
problems [1]. Especially in domains developing embedded software sys-
tems for complex hardware, such as the automotive domain or the aviation
domain, companies attempt to overcome challenges during development
by applying model-based languages. These model-based languages, such
as The Mathworks MATLAB/Simulink1 and IBM Rational Rhapsody2,
can be used to abstract from concrete problems on a much higher level
in order to allow developers to solve problems on a more understandable
level [1]. Using the developed software models, up to 80% of the code used
on embedded control units can be generated [2].

While all these programming languages help to alleviate the problems
linked with the complexity inherent in the different target domains, devel-
oping variants with largely similar yet different functionality, compared
to existing products, is still a time consuming and costly task. For exam-
ple, such variants need to satisfy the growing demand of customized car
variants in the automotive domain. Thus, copying existing software vari-
ants and modifying them to changed requirements is common practice,

1 http://www.mathworks.com/products/simulink/
2 http://www.ibm.com/software/awdtools/rhapsody/

66

David Wille

especially for domains with large numbers of product variants (e.g., the
automotive domain) [3]. These so-called clone-and-own approaches are
an efficient means to create new variants from existing products as the
new software does not have to be developed from scratch, but reuses a
large set of existing functionality.

Although, these clone-and-own approaches help companies to reduce
the initial overhead when creating new software variants, they involve
risks for the development process in the long run and are considered
to be harmful for maintaining a set of related variants as no managed
reuse strategy is applied [4, 5]. Over time, the set of related variants and
the associated maintenance effort grows as, in most cases, the relation
between created variants is not documented and only is implicitly known
by domain experts. As a result, fixing an identified error in all variants of
the growing software family becomes a complex task because each variant
has to be manually analyzed and multiple solutions might be needed to fix
the bug in all variants. Overall maintaining a large set of related software
variants, which evolved using clone-and-own techniques, becomes a costly
and tedious task [3].

Literature recommends to apply product line engineering (PLE) meth-
ods in order to realize more sophisticated reuse techniques and system-
atic reuse of artifacts amongst related products [6,7]. Nevertheless, most
companies refrain from considering these software product lines (SPL) as
adopting them involves migration processes, which expose them to high
risks (e.g., the development is interrupted during the transition to an
SPL) [5].

Approach

To provide a possible alternative solution to these high-risk SPL adap-
tion strategies, we introduced family mining, a reverse engineering tech-
nique allowing to (semi-)automatically analyze an existing basis of related
block-based model variants and to generate an annotated 150% model
containing the variability information for the corresponding software fam-
ily [8–11]. Such a 150% model stores all implementation artifacts of the
analyzed software family and annotates whether the artifacts are con-
tained in all variants (i.e., common artifacts) or only in certain variants
(i.e., varying artifacts). The resulting 150% model identified by our ex-
tractive variability mining approach provides a basis for systematic reuse
of the existing software artifacts in an SPL and analysis of the underlying
software system.

67

Variability Mining

Based on the generated 150% model, we realized an approach to au-
tomatically transition from clone-and-own approaches to an SPL. For our
approach, we utilize delta-modeling [12] as a transformational SPL tech-
nique to transform an existing variant to any other variant by using trans-
formational delta operations to add, remove, or modify elements. Using
the identified variability from the 150% model, we are able to automat-
ically generate delta languages providing corresponding delta operations
specifically tailored for modifying model elements from the used program-
ming language [13]. In addition, we use the variability information from
the 150% model to generate a set of delta modules storing the delta opera-
tion calls for the newly generated delta language that are needed to trans-
form between the variants analyzed during family mining [13]. These delta
modules allow to generate all variants contained in the analyzed product
family by applying them to an existing variant. In addition, developers
can easily extend the generated SPL by manually developing new delta
modules using the delta language generated with our approach. Further-
more, it is possible to automatically integrate complete new variants by
generating corresponding delta modules using our automatic generation
technique. As a result, our approach allows to minimize the initial risks of
adopting PLE methods as the variants from the existing software family
can be transfered step-by-step to a fully-integrated platform [14] relying
completely on SPL techniques. Thus, our approach allows to make PLE
techniques available for a set of related software variants that were pre-
viously maintained in isolation and can now benefit from development in
a single repository of efficiently reusable functionality, automatic variant
generation, and improved maintenance (e.g., bug fixes are applied to a
single repository and solve problems in all variants by simply regenerating
all affected variants).

References

1. Florian Deissenboeck, Benjamin Hummel, Elmar Jürgens, Bernhard Schätz, Ste-
fan Wagner, Jean-François Girard, and Stefan Teuchert. Clone Detection in Au-
tomotive Model-based Development. In Proc. of the Intl. Conference on Software
Engineering (ICSE), ICSE ’08, pages 603–612. ACM, 2008.

2. Michael Beine, Rainer Otterbach, and Michael Jungmann. Development of Safety-
Critical Software Using Automatic Code Generation. Technical Report 2004-01-
0708, SAE International, 03 2004.

3. Nam H. Pham, Hoan Anh Nguyen, Tung Thanh Nguyen, Jafar M. Al-Kofahi, and
Tien N. Nguyen. Complete and Accurate Clone Detection in Graph-based Models.
In Proc. of the Intl. Conference on Software Engineering (ICSE), ICSE ’09, pages
276–286. IEEE, 2009.

68

David Wille

4. C. Kapser and M. W. Godfrey. ”Cloning Considered Harmful” Considered Harm-
ful. In Proc. of the Working Conference on Reverse Engineering (WCRE), WCRE
’06, pages 19–28. IEEE, 2006.

5. Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. An Exploratory Study of Cloning in Industrial Software
Product Lines. In Proc. of the European Conference on Software Maintenance and
Reengineering (CSMR), CSMR ’13, pages 25–34. IEEE, 2013.

6. Paul C. Clements and Linda M. Northrop. Software Product Lines: Practices and
Patterns. 2001.

7. Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

8. Sönke Holthusen, David Wille, Christoph Legat, Simon Beddig, Ina Schaefer, and
Birgit Vogel-Heuser. Family Model Mining for Function Block Diagrams in Au-
tomation Software. In Proc. of the Intl. Workshop on Reverse Variability Engi-
neering (REVE), SPLC ’14, pages 36–43. ACM, 2014.

9. David Wille, Sönke Holthusen, Sandro Schulze, and Ina Schaefer. Interface Vari-
ability in Family Model Mining. In Proc. of the Intl. Workshop on Model-Driven
Approaches in Software Product Line Engineering (MAPLE), SPLC ’13, pages
44–51. ACM, 2013.

10. D. Wille. Managing Lots of Models: The FaMine Approach. In Proc. of the Intl.
Symposium on the Foundations of Software Engineering (FSE, FSE ’14, pages
817–819. ACM, 2014.

11. D. Wille, S. Schulze, C. Seidl, and I. Schaefer. Custom-Tailored Variability Mining
for Block-Based Languages. In Proc. of the Intl. Conference on Software Analysis,
Evolution, and Reengineering (SANER), volume 1 of SANER ’16, pages 271–282.
IEEE, 2016.

12. Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. Delta-Oriented Programming of Software Product Lines. In Software
Product Lines: Going Beyond, volume 6287, pages 77–91. Springer, 2010.

13. D. Wille, T. Runge, C. Seidl, and S. Schulze. Model-Based Delta Generation Using
Extractive Software Product Line Engineering. In Proc. of the Intl. Conference on
Generative Programming and Component Engineering (GPCE), GPCE ’16, 2016.
submitted for review.

14. Micha l Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas
Schmorleiz, Ralf Lämmel, Stefan Stănciulescu, Andrzej Wasowski, and Ina Schae-
fer. Flexible Product Line Engineering with a Virtual Platform. In Proc. of the
Intl. Conference on Software Engineering (ICSE), ICSE ’14, pages 532–535. ACM,
2014.

69

Decision-Making Support for Software
Adaptation at Runtime

Edith Zavala, Xavier Franch, Jordi Marco

Software Service Engineering research group (GESSI)
Universitat Politècnica de Catalunya (UPC)

Barcelona, Catalunya, Spain

Abstract

In the last years, self-adaptive systems have become a crucial topic in
the research and industry areas. Many initiatives to explore solutions for
this kind of systems have emerged from both communities. One of the
most popular approaches is the use of feedback loops. The autonomic
element introduced by Kephart and Chess [1] and popularized with the
IBMs architectural blueprint [2] for autonomic computing is one of the
most accepted feedback loop solutions (see Figure 1). For instance, in [3]
a feedback loop is utilized for detecting and adapting requirements that
depend on context, affected by uncertainty. This approach uses machine
learning techniques for identifying patterns on top of sensed data and de-
termining the best adaptation of requirements, at runtime. According to
the validation performed in [4] this approach is a very promising solution
for executing self-adaptation at runtime.

Currently, more and more approaches use data analytics (e.g. data
mining) for exploiting great amounts of runtime data collected through a
monitoring infrastructure (e.g. through sensors and online data sources)
in order to support the system runtime adaptation, as in [3]. The qual-
ity of the data (i.e. completeness, correctness, timely, etc.) provided by
the monitoring infrastructures (e.g. Monitor element in Fig. 1) affects di-
rectly the performance of the self-adaptive systems. Several approaches
have been proposed to support monitoring of software systems; however,
according to [5] most of them assume that the monitors are static com-
ponents. This implies that the providers must know everything to be
monitored at design time. This vision is too rigid to be usable in realistic
settings. Nowadays, monitoring infrastructures supporting self-adaptive
systems need to be reconfigured at runtime as well in order to respond
to context changes, e.g. new measures to collect, at a different sampling
rate, with a different protocol, etc.

70

Edith Zavala, Xavier Franch, Jordi Marco

Fig. 1: IBMs autonomic element (from [1–3])

Motivated by the need of new and innovative methods and techniques
for effectively and efficiently analyzing, planning and applying monitor-
ing infrastructures reconfiguration decisions at runtime, we have explored
new and existing solutions, and we have proposed an ongoing Monitor-
ing Reconfiguration approach (see Fig. 2). Our approach, based on the
MAPE-K loop, intends to support Monitor element’s reconfiguration for
self-adaptive systems (managed by a feedback loop). Through the MAPE-
K feedback loop our approach identifies conditions in which the Monitor
could require a reconfiguration aligning it with the reconfiguration pro-
cess of the Managed Elements and coordinately analyses, plans, and exe-
cutes the reconfiguration and adaptation of both the Monitor (using the
Knowledge Base as communication channel) and the Managed Elements.

In order to do so, we introduced a set of new elements to the MAPE-K
loop presented in [3] and validated in [4]: a Mine Data element which is
in charge of intelligently apply one or more data analytic techniques over
the sensed data; a Reconcile Reconfigurations element which coordinates
the reconfigurations of the Monitor and the Managed Elements in order
to prevent e.g. contradictory reconfigurations, undesired states, etc.; and

71

Decision-Making Support for Software Adaptation at Runtime

Policies which in our solution, unlike [3], are utilized by all the MAPE-K
elements, in order to abstract specific application (i.e. Managed Elements)
details, and distributed by the Knowledge Base. Finally, our approach
allows the Domain Experts to modify Policies and supervise and request
reconfigurations at runtime.

Fig. 2: Monitoring Reconfiguration approach high-level global view

Thanks to the abstraction of the Managed Elements’ details (e.g. do-
main variables, technologies, etc.) our solution can support and be reused
for an increasing number of applications at both architectural and imple-
mentation level and at design and runtime. Currently, we are defining a
set of use cases in order to validate our approach.

References

1. J.O. Kephart and D.M. Chess. The vision of autonomic computing. IEEE Computer,
36(1):4150, 2003.

2. IBM Corporation. An architectural blueprint for autonomic computing, 2006.

72

Edith Zavala, Xavier Franch, Jordi Marco

3. A. Knauss et al. Acon: A learning-based approach to deal with uncertainty in
contextual requirements at runtime. Information and Software Technology, 70:85–
99, 2016.

4. E. Zavala et al. Sacre: A tool for dealing with uncertainty in contextual requirements
at runtime. In 23rd IEEE International Requirements Engineering Conference (RE),
pages 278–279, 2015.

5. R. Contreras and A. Zisman. A pattern-based approach for monitor adaptation. In
IEEE International Software Science, Technology & Engineering Conference (SW-
STE), pages 30–37, 2010.

73

HDSO: Harvest Domain Specific Non-taxonomic
Relations of Ontology from Internet by Deep

Neural Networks (DNN)

Xuejiao Zhao?

Nanyang Technological University
xjzhao@ntu.edu.sg

Abstract. In ontology learning domain, non-taxonomical relations ex-
traction is less studied. In general, there are two research tasks to get
the non-taxonomical relations: detect concepts and extract their rela-
tions. Traditional methods get the concepts by shollow NLP tools like
part-of-speech (POS) and analyze on morphologic or tf/idf measurement,
then extract the non-taxonomic relations of the concepts by rule-based
method. However, all of the traditional methods ignore the dependency
of terms in sentences, and their statistic refinement process also lose
many important relations which appear infrequently in the data re-
source. In this research, a automatic method named HDSO is proposed
to discover domain specific concepts and their non-taxonomic relations
of ontology from domain specific website. We leverage the openIE to
get the non-taxonomic relations candidates and extract novel features of
those candidate sentences, then we rank the importance of the relations
by self-training DNN(deep neural networks) classifier. The accuracy of
HDSO is 0.74 higher than 0.68 which get by SVM, the result shows that
with the self-training DNN classifier, non-taxonomic relations can be ex-
tracted more accurately. For evaluation of our method, we utilize HDSO
to Stack Overflow – a Q&A website about computer programming, and
the tagWiki, questions and answers contain huge number of sentences
with affluent relations descriptions of software engineering domain. As a
result we get 15790 concepts, 9660 non-taxonomic relations.

Introduction

Ontology is a formal, explicit specification of a shared conceptualiza-
tion [1]. The define of ontology is O = (C,R,A, Top), which C is the
concepts sets, R is the relations set of the assertions among the concepts,
A is the axioms and Top is the highest concepts of current domain. There
are 2 subsets of R — H (taxonomic relations) and N (non-taxonomic rela-
tions) [2]. Ontology represents knowledge with high degree of organization
in structural or semi-structural semantics, it’s very useful in information

? Advisor:Zhenchang Xing, Nanyang Technological University,ZCXing@ntu.edu.sg

74

Xuejiao Zhao

retrieval, information maintenance and information intelligence, etc. [3].
But manual building of ontologies by domain sophisticates is labour in-
tensive, time-consuming, biased towards sophisticates, and specific to the
construction motivation [4].

In this research, we propose a novel system called HDSO(Harvest
Domain Specific Ontology) to extract all the concepts and their non-
taxonomic relations from domain specific website automatically. In which
we leverage the advanced Open information extraction (open IE) of Stan-
ford to the extraction of structured relation triples. Then we extract the
text features, relations features, concepts features and resources features
from the candidate relations by leveraging NLP parsing techniques, in-
corporating statistical, lexico-syntactic, enrichment of Google trend, etc.
With the features extracted above, a self-training DNN(deep neural net-
works) classifier is adopted to rank all the candidate relations. We conduct
a case study which extracts ontological knowledge of software engineering
domain by HDSO, specifically key concepts and semantic relations from
tagWiki. The experiment results show that the concepts and correspond-
ing non-taxonomic relations extracted by our system is more concise and
contains a richer semantics compared with alternative systems.

More specifically, our major contributions include:

– Propose a new method called HDSO to extract domain specific con-
cept and non-taxonomic relations of ontology from domain related
website.

– Leverage HDSO to Stack Overflow tagWiki, and get 15790 concepts,
9660 non-taxonomic relations.

– Deliver 3 corpus to public: software engineering domain specific con-
cept set, non-taxonomic software engineering domain specific relations
set with category, software engineering domain specific concept rela-
tion network.

The Approach

Architecture of HDSO

In this paper, we propose a novel system called HDSO(Harvest Domain
Specific Ontology) to extract all non-taxonomic relations from domain
specific website automatically. The HDSO comprises 5 main components
as shown in Fig. 1, namely data pre-processing, extract candidate re-
lations, add NLP makeup, extract features of candidate relations, rank
candidate relations. The input of HDSO is the text materials from do-

75

HDSO

Ontology with
Non-taxonomic

Relations

NLP Features
Extraction

Deep-DSO

Split Sentences and
Pre-process Data

Text Materials
From Domain

Specific Website

Add NLP
Makeup

Candidate
Sentences With

NLP Makeup

Knowledge
Resource

Features Of
Candidate
Sentences

Knowledge
Resource

Filter Sentences
By Domain Key

Words

OpenIE

Candidate
Relations

Extract Concepts
Features

Statistics Features Extraction

Classify

Mark Relations by
Domain Expert

Categorical
Non-taxonomic

Relations

Non-taxonomic
Relations Clustering

and Categorize by
Domain Expert

Candidate
Concepts with

Relations

Extract Relation
Triples by openIE

Features Of
Candidate Relations

（Subj,Rel,Obj）

(����, ���, ���)

Candidate
Relations

(����, ���, ���, Features)

Extract Text,
Relation, Concept,
Resource Features

Add NLP Makeup and
Extract Features

Mard

Domain Lexicon

Supervised Data

（����, ���, ���,
Features, Score）

Train
DNN

Trained DNN
Model

Fig. 1: The Structure of HDSO

Please enter your text here:

Firebird is written in C++, and is ultimately derived from the Borland InterBase 6.0 source code

Part­of­Speech:

Firebird is written in C++ , and is ultimately derived from the Borland InterBase 6.0 source code
NNP VBZ VBN IN NNP , CC VBZ RB VBN IN DT NNP NNP CD NN NN

1

Named Entity Recognition:

Firebird is written in C++ , and is ultimately derived from the Borland InterBase 6.0 source code
ORGANIZATION 6.0

1

Basic Dependencies:

Firebird is written in C++ , and is ultimately derived from the Borland InterBase 6.0 source code
NNP VBZ VBN IN NNP , CC VBZ RB VBN IN DT NNP NNP CD NN NNcase nummodauxpass advmod

nmodnsubjpass
punct

compound

cc

auxpass
compound

det
caseconj

nmod
punct

1

Enhanced++ Dependencies:

Firebird is written in C++ , and is ultimately derived from the Borland InterBase 6.0 source code
NNP VBZ VBN IN NNP , CC VBZ RB VBN IN DT NNP NNP CD NN NNcaseauxpass nummodadvmod

nmod:innsubjpass
punct

compound

cc

auxpass
compound

det
caseconj:and

nmod:from
punct

nsubjpass

1

Open IE:

Firebird is written in C++ , and is ultimately derived from the Borland InterBase 6.0 source code
Entity Entity

Relation
Relation

Entity Entity EntityRelation
Relation

Entitysubject
object object object

subject object
object

subject
subject

1

CoreNLP Tools:

Enter a TokensRegex (http://nlp.stanford.edu/software/tokensregex.shtml) expression to run against the above sentence:

Visualisation provided using the brat visualisation/annotation software (http://brat.nlplab.org/).

parts­of­speech named entities dependency parse openie

Submit

TokensRegex Semgrex

Matche.g., (?$foxtype [{pos:JJ}]+) fox

Fig. 2: open IE results of the definition sentence of the Firebird

main specific websites and the domain lexicon. e.g. Healthcare website,
cooking website, computer programming website. We extract text mate-
rials from the domain specific websites, after data pre-processing, we use
open IE to split the input sentences into a set of clauses. open IE is a
system referring to discover possible structured relations of interest from
plain sentence, leverage the dependency parse in open IE, we generate
candidate relation triples like O = (subj, rel, obj) as shown in Fig. 2.

Then we incorporate coreNLP of Stanford for POS tagging, and utilize
domain lexicon to generate features(e.g. sum of tf-idf, POS fractions) for
candidate relation triples. We mark 1000 candidate relation triples as
supervised data and train a self-training DNN classifier. Then we use the
trained model to classify the rest candidate relation triples.

After the above 4 steps, the non-taxonomic relations of domain ontol-
ogy are extracted from the raw materials.

Extract Features of Candidate Relations and Self-Training
DNN Classifier

After getting the candidate relations from open IE and add the NLP
makeup to all of them, we need to rank them by how reasonable the ex-
tracted concepts and how well the relations describe the concepts. There
are many properties beyond simple term statistics which can be extract
from the candidate relation then use to evaluate the qualification of the
candidate relations. We extract the features of every candidate relations
and leverage a self-training DNN classifier to find the important rela-
tions. For the complex features we provide a brief description bellow. cr

76

Xuejiao Zhao

Feature These features evaluate the quality of the whole candidate rela-
tion. TF-IDF is a numerical statistic which can evaluate the importance
of a word to a document in a corpus [5]. The feature sum tfidf and av-
erage tfidf reflect the importance of the words in candidate relation. If
the words in the candidate relation is very general like it, language, the
sum tfidf and average tfidf value will be very low. Other wise if the words
in the candidate relation is unique and distinctive like ”c++ library”,
”MySQL relational database”, the sum tfidf and average tfidf value will
be high. For the #mention cr, high value meant this relation extract from
the raw materials many times, so the candidate relation is probably a rea-
sonable relations. #domain keyword cr, obviously the candidate relation
which contains more domain keywords show higher reasonability. The pos
fraction use following definition:

– Noun : pos tag equal ’NN’, ’NNS’, ’NNP’, ’NNPS’.
– Verb : pos tag equal ’VB’, ’VBD’, ’VBG’, ’VBN’, ’VBP’, ’VBZ’
– Adj : pos tag equal ’JJ’, ’JJR’, ’JJS’

Relation Phrase Features These features evaluate the quality of
the relation phrase. The span rel is the start token and the end token
which the rel extract from the original sentence.

Concept Features These features evaluate the quality of the con-
cept. Google Trends is a public web facility of Google Inc., based on
Google Search, that shows how often a particular search-term is entered
relative to the total search-volume across various regions of the world,
and in various languages. The horizontal axis of the main graph repre-
sents time (starting from 2004), and the vertical is how often a term is
searched for relative to the total number of searches, globally.

Evaluate Candidate Relations by Deep Neural Networks
(DNN)

From those mentions, we manual mark 1000 candidate relations with
0(unimportant relations) and 1(important relation)

Fig.3 is the framework of using deep neural networks, x stands for in-
put, the features passed forward from the networks previous layer. Many
xs will be fed into each node of the last hidden layer, and each x will
be multiplied by a corresponding weight w. The sum of those products
is added to a bias and fed into an activation function. In this case the
activation function is a rectified linear unit (ReLU), commonly used and
highly useful because it doesnt saturate on shallow gradients as sigmoid

77

HDSO

activation functions do. For each hidden node, ReLU outputs an acti-
vation, a, and the activations are summed going into the output node,
which simply passes the activations sum through. That is, a neural net-
work performing binary classification will have one output node, and that
node will just multiply the sum of the previous layers activations by 1.
The result will be 0 or 1 according to the sum.

Fig. 3: Using Deep Neural Networks Classifier

Result

Fig.4 is non-taxonomic relation network of ontology which extracted from
the tagWiki of Firebird. The blue lines indicate taxonomic relations and
the other lines indicate non-taxonomic relations. With such a ontology we
can develop the direct search engine which answer the query with entity
name.

Firebird

open-source

cross-platform

Commercial
applications

Linux

SQL relational database
management system(RDBMS)

Borland InterBase
6.0 source code

C++

is

is libre for

is derived from

running on

is written in

Fig. 4: An Example of the Result of HDSO

78

Xuejiao Zhao

Fig.5 is the accuracy in each iteration. According to the results, the
accuracy increases consistently when we perform more iterations. In par-
ticular, after the seventh iteration, our approach achieves the best accu-
racy of 74.05%.

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7

Fig. 5: Accuracy in Each Iteration

Acknowledgements

This work was conducted within the Rolls-Royce@NTU Corporate Lab
with support from the National Research Foundation (NRF) Singapore
under the Corp Lab@University Scheme.

References

1. Thomas R Gruber et al. A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2):199–220, 1993.

2. Mehrnoush Shamsfard and Ahmad Abdollahzadeh Barforoush. Learning ontolo-
gies from natural language texts. International journal of human-computer studies,
60(1):17–63, 2004.

3. Yan Yalan and Zhang Jinlong. Building customer complaint ontology: Using owl to
express semantic relations. 2006.

4. Harith Alani, Sanghee Kim, David E Millard, Mark J Weal, Wendy Hall, Paul H
Lewis, and Nigel R Shadbolt. Automatic ontology-based knowledge extraction from
web documents. IEEE Intelligent Systems, 18(1):14–21, 2003.

5. Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive
datasets. Cambridge University Press, 2014.

79

Lessons Learned from a Literature Survey on
the Application of Mutation Testing

Qianqian Zhu?, Annibale Panichella, and Andy Zaidman

Software Engineering Research Group,
Delft University of Technology

{qianqian.zhu, a.panichella, a.e.zaidman}@tudelft.nl
http://swerl.tudelft.nl/bin/view/Main/WebHome

Abstract. We conducted a systematic literature review (SLR) on muta-
tion testing, with a particular focus on the understanding of how people
actually apply mutation testing and how they cope with the well-known
limitations of mutation testing, e.g., the cost to generate mutants. Our
systematic literature review is based on a collection of 159 papers from
17 venues. In this article, we will mainly present the lessons we learned
from the literature survey. In particular, we are going to highlight three
primary findings from our systematic literature review and illustrate our
research plan.

Keywords: mutation testing; systematic literature review; application;
lessons

1 Introduction

Mutation testing has been very actively investigated by researchers since
the 1970s and remarkable advances have been achieved in its concepts,
theory, technology and empirical evidence. While the latest realisations
have been summarised by existing literature review (e.g. Jia and Har-
man [1] surveyed more than 390 papers on mutation testing), we still
lack insight into how mutation testing is actually applied. Therefore, we
conducted a systematic literature review on the application perspective
of mutation testing [2] based on a collection of 159 papers published be-
tween 1981 and 2015. We identified and classified the main applications of
mutation testing, and also analysed the level of replicability of empirical
studies related to mutation testing. Particularly, we characterised these
studies on the basis of seven facets, including in which testing activities
mutation testing is used, which mutation tools and which mutation op-
erators are employed, and how the core inherent problems of mutation

? Software Engineering Research Group, Delft University of Technology, Mekelweg 4,
2628CD Delft, The Netherlands. Email address: qianqian.zhu@tudelft.nl

80

2 Q. Zhu et al.

testing, i.e. the equivalent mutant problem and the high computational
cost, are addressed during the actual usage. In the following sections, we
will discuss our key findings related to SLR and our derived research plan.

2 Important takeaways from the SLR

Due to the sheer size of our SLR, we will highlight three key points in
this paper (the readers can refer to [2] for more details):

– Many of the supporting techniques for making mutation testing appli-
cable are still under-developed. Also, existing mutation tools are not
complete concerning the mutation operators they offer. The two in-
herent problems of mutation testing, especially the equivalent mutant
detection problem, are not well-solved in the context of our research
body. For the equivalent mutant problem, manual analysis ranked the
top 1 among the others.

– A deeper understanding of mutation testing is required, such as what
particular kinds of faults mutation testing are good at finding, and
how a certain type of mutant work when testing real software. This
would help the community to develop new mutation operators as well
as overcome some of the inherent challenges.

– The awareness of appropriately reporting mutation testing in testing
experiments should be raised among the researchers. We analysed
159 papers where around half percent did not provide their mutation
tool source and subject program source. We considered the following
five elements to be essential: mutation tool source, mutation operators
used in experiments, how to deal with the equivalent mutant problem,
how to cope with high computational cost and subject program source.

3 Research plan

From the previous section, we remember that the key inherent problems
related to mutation testing are not well-solved during the application.
Our interest is to reduce the high computational cost of mutation testing
caused by the generation and execution of a vast number of mutants. Our
method is inspired by Fraser and Arcuri [3]: they defined infection distance
for their mutation-based test data generation to represent weak mutation
condition. We then apply this idea to pre-analyse whether the mutants
are “infected” against the test cases, thus to filter these “uninfected”
mutants. By employing such a mutant infection analysis, we can speed
up the process of mutation testing.

81

Lessons Learned from a SLR on the Application of Mutation Testing 3

References

1. Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. Software Engineering, IEEE Transactions on, 37(5):649–678, 2011.

2. Qianqian Zhu, Panichella Annibale, and Andy Zaidman. A systematic literature
review of how mutation testing supports test activities. PeerJ Preprints, 2016.

3. Gordon Fraser and Andrea Arcuri. Achieving scalable mutation-based generation
of whole test suites. Empirical Software Engineering, 20(3):783–812, 2015.

82

