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Business process deviance refers to the phenomenon whereby a subset of the executions of a business process
deviate, in a negative or positive way, with respect to its expected or desirable outcomes. Deviant executions
of a business process include those that violate compliance rules, or executions that undershoot or exceed
performance targets. Deviance mining is concerned with uncovering the reasons for deviant executions by
analyzing business process event logs. This article provides a systematic review and comparative evaluation
of deviance mining approaches based on a family of data mining techniques known as sequence classifica-
tion. Using real-life logs from multiple domains, we evaluate a range of feature types and classification
methods in terms of their ability to accurately discriminate between normal and deviant executions of a
process. We also analyze the interestingness of the rule sets extracted using different methods. We observe
that feature sets extracted using pattern mining techniques only slightly outperform simpler feature sets
based on counts of individual activity occurrences in a trace.

General Terms: Process Mining, Business Process Deviance, Sequence Classification

1. INTRODUCTION
Process mining is a family of techniques to extract knowledge of business processes
from event logs [van der Aalst 2011]. It encompasses, among others, techniques for
automated discovery of process models from event logs, techniques for checking con-
formance between a given process model and an event log, as well as techniques for
analyzing and predicting performance of business processes based on event logs.

This paper deals with business process deviance mining – a family of process min-
ing techniques aimed at analyzing event logs in order to explain the reasons why a
business process deviates from its normal or expected execution. Such deviations may
be of a negative or of a positive nature – cf. theory of positive deviance [Spreitzer and
Sonenshein 2004]. Positive deviance corresponds to executions that lead to high pro-
cess performance, such as achieving positive outcomes with low execution times, low
resource usage or low costs. Negative deviance refers to the executions of the process
with low process performance or with negative outcomes or compliance violations.

The input of deviance mining is an event log consisting of a set of labelled traces (the
so-called training set). Each trace represents the execution of one case of the business
process under analysis. It consists of a sequence of events, where an event corresponds
to the execution of an activity. Each trace is associated with a label indicating whether
the trace is “normal” or “deviant”.

Given this input, the problem of deviance mining is that of calculating a function
(called a classifier) that takes as input a trace and outputs a class for this trace (normal
or deviant). Such function must produce accurate labels, i.e. it should guess the correct
class of a trace both for traces in the training set but also for other unseen traces.
Furthermore, since the purpose of deviance mining techniques is to explain deviance,
their output should be expressed in terms of patterns or rules that allow an analyst to
extract useful insights regarding the sources of the observed deviance.

Since traces consist of sequences of events, one family of techniques applicable for
deviance mining is sequence classification [Xing et al. 2010]. The goal of sequence clas-
sification is to construct classifiers that discriminate between two or more classes of
sequences. One key issue in sequence classification is that of extracting features from
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the sequences that can be given as input to standard classification techniques such as
decision trees. Such features can be extracted for example using sequence mining tech-
niques. Various such techniques have been studied in the context of business process
deviance mining as discussed later. However, no comparative study has been conducted
to assert which techniques are more suitable in this setting.

This article presents a comparative evaluation of sequence classification techniques
for business process deviance mining. Based on a review of the state of the art, the ar-
ticle identifies two families of techniques that have been employed for deviance mining
– those based on frequent pattern mining and those based on discriminative pattern
mining. Representatives of these two families are benchmarked using a battery of real-
life event logs, covering situations where deviance is frequent (balanced datasets) and
others where deviance is rare (unbalanced). These representative techniques are as-
sessed in terms of accuracy and interestingness measures. The former measures serve
to quantify the extent to which the extracted patterns correctly reflect the classifica-
tion of cases into normal and deviance, whereas the latter measures serve as a proxy
for the usefulness of the extracted patterns.

This article is an extended version of a conference paper [Nguyen et al. 2014]. With
respect to the conference paper, this article adds: (i) a systematic classification and re-
view of deviance mining techniques; (ii) a refinement of the evaluated techniques using
Fisher score for feature selection; (iii) an extended evaluation with three additional
event logs; and (iv) an assessment of the interestingness of the extracted classifiers in
addition to their accuracy.

The paper is structured as follows. Section 2 discusses existing methods for business
process deviance mining. Section 3 outlines the methods for feature extraction and for
classification evaluated in this study. Next, Section 4 presents the experimental results
in terms of classification accuracy while Section 5 presents the results in terms of rules
interestingness. Section 6 summarizes the contribution and discusses directions for
future work.

2. STATE OF THE ART
To analyze the state of the art in the field of sequence mining for business process
deviance mining, we started by conducting a literature search using the systematic
review principles of [Kitchenham 2004]. The search process started by submitting
queries to a well-known literature database, Google Scholar.1 with keywords associ-
ated with the scope of the paper. We constructed queries by combining the keyword
“business process” with the following keywords: “deviance mining” (referring to the
problem under study), “sequence mining” (the broad class of solutions of interest) and
“discriminative patterns” (the specific class of solutions of interest). Since the term
“workflow” is sometimes used as a quasi-synonym of “business process”, we also in-
cluded queries combining “workflow” with the above keywords. For each query, we
gathered the first 20 hits in Google Scholar. As we conducted the search, we noted ad-
ditional terms appearing in the titles of relevant papers, namely “sequential patterns”
and “signature patterns” and also used such terms in the search. The search was per-
formed in September 2015. It resulted in 200 hits. Based on title, we filtered out papers
that were clearly out of scope and removed duplicates. This filtering reduced the num-
ber of candidate papers to 34. We then proceeded with an inspection of the references
of each paper in order to find other papers related to the topic. This activity increased
the number of candidate papers to 48.

From these publications we could classify them into three main groups: (1) pattern
mining papers which focus on discovery of certain interesting patterns from datasets,

1http://scholar.google.com
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(2) classification papers which propose new techniques and algorithms to improve clas-
sification quality with regards to a target class variable, and (3) pattern-based classi-
fication papers which involve mining patterns and evaluating the predictive power of
the patterns with regards to a target class variable. Note that papers in all groups
span related work within and outside the domain of business processes. Our review
was then concentrated on the last group of 9 papers since we wanted to survey related
techniques which have been evaluated in or can be applied for business processes.
From this group, we selected two representative papers of automated pattern mining
and classification evaluation. The first one is [Lo et al. 2009] which examined discrim-
inative patterns in the field of software engineering, and the second one is [Bose and
van der Aalst 2013] which examined different types of sequential patterns in business
processes. In addition, based on our knowledge, we also added two case study papers
which proposed manual but closely related approaches: [Suriadi et al. 2013] examined
business process activities and their effects on the process duration, and [Swinnen
et al. 2012] examined the predictive power of sets of activities. Consequently, our sur-
vey could identify a taxonomy (see Fig. 1) represented by four papers and consisted of
three categories of techniques: (1) based on individual activities, (2) set-based, and (3)
sequence-based. In addition sequence-based techniques could be further distinguished
into sequential and discriminative.

Event Log

Sequential Patterns

(Bose et al.)

Sequence-

Based

Discriminative Patterns

(David Lo et.al.)

(Chengnian Sun et.al.)

Decision Tree

Neural Net

k-NN

Set-Based
Association-Based Patterns

(Jo Swinnen et al.)

Individual

Activities

Association-Based Patterns

(Suriadi et al.)

Fig. 1: Taxonomy of Business Process Deviance Mining Approaches

All automated techniques for deviance mining (i.e. excluding manual delta analysis),
involve a pattern extraction phase where patterns are extracted from traces seen as
sequences of simple symbols (tokens) representing activity occurrences, followed by a
classifier construction phase, where each trace is abstracted as a vector of features,
and these vectors are given as input to a classification method such as decision tree
miner, which produces a classifier. The resulting classifier is then analyzed in order to
extract individual patterns or rules combining multiple patterns, that explain a high
percentage of the observed deviance. These patterns or rules are given as input to
analysts to help them understand the sources of observed deviance in the process.

Different techniques differ depending on the abstraction of the event logs used to
define the features. The three ways of abstraction as shown on the taxonomy are de-
scribed as follows.
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(1) Occurrence count of individual activities in a trace as in [Suriadi et al. 2013]. In
this feature extraction method, each activity type appearing in the log (e.g. “Receive
Purchase Order Change”, “Issue Invoice”, “Invoice Paid”) is treated as a numerical
feature. For a given trace, the value of an activity feature is the number of times the
activity in question occurs in the trace. For example if in a given trace, activity “Re-
ceive Purchase Order Change” appears 3 times, this is the value of the correspond-
ing activity feature. This approach is quite straightforward with consideration that
single or multiple activities may have significant influence on the case outcome.

(2) Frequent set of trace attributes as in [Swinnen et al. 2012]. In this feature extrac-
tion method, frequent sets of activities are taken as a feature regardless of the
order of their occurrence in the trace. A trace in this view follows the market basket
data model in data mining. Frequent item set mining algorithms, such as Apriori
[Agrawal et al. 1994], can then be applied to mine patterns that meet a support
and/or confidence threshold. This approach takes interest in the association among
activities regardless of their ordering.

(3) Sequence of events that occurs multiple times in a trace or across traces. These
features represent different way of event coordination such as loop, sub-processes
or synchronization. We select two representative types of sequence-based features:
one from [Bose and van der Aalst 2009] (called Sequential Patterns) and one from
[Lo et al. 2009] (called Discriminative Patterns).
(a) [Bose and van der Aalst 2009] proposes sequential patterns including Tandem

Repeats, Alphabet Tandem Repeats, Maximal Repeats and Alphabet Maximal
Repeats. These patterns capture different types of control-flow relations in a
business process (loops, parallelism and subprocesses) and have been shown
to be potentially suitable for analyzing business process deviance [Bose and
van der Aalst 2013]. More specifically, tandem repeats mining searches for re-
current sequences of events within a trace which represent loops, whereas maxi-
mal repeats mining searches for any repetitive sequences in the whole log which
represent sub-processes. An alphabet-type feature represents multiple tandem
repeats or maximal repeats, respectively, if they share the same constituent
activities (alphabet is the set of unique activities constituting a sequential pat-
tern). Alphabet-based patterns, thus, capture variations in tandem repeats or
maximal repeats due to parallelism.

(b) [Lo et al. 2009] proposes iterative features consisting of consecutive or non-
consecutive events that have multiple occurrence within a trace or across traces.
This technique is different to tandem/maximal repeats in the sense that the
atomic events in an iterative feature do not necessarily occur close together,
which captures synchronized behaviors among events. In addition, [Lo et al.
2009] uses feature selection technique to return only features that are strongly
associated with the outcome classes (so called ”Discriminative Patterns”). This
association is measured by a weight value, such as Fisher score [Duda et al.
2012].

The first method (individual activities) is in essence a baseline. Indeed, the occur-
rence of a single activity in a trace is the simplest form of feature one can extract from
a sequence. In this work, we aim at evaluating how much added-value other feature
extraction methods (i.e. set-based and sequence-based variations) could contribute on
top of the individual activities. Thus, we study seven feature sets in the sequel: (i)
individual activities (IA); (ii) maximal repeats (MR); (iii) alphabet maximal repeats
(MRA); (iv) tandem repeats (TR); (v) alphabet tandem repeats (TRA); (vi) iterative
patterns (IP); and (vii) set-based patterns (SET).
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Deviance mining is partially related to predictive monitoring of business pro-
cesses [Maggi et al. 2013; Metzger et al. 2015]. Whereas deviance mining aims at ex-
plaining the reasons for deviant cases in post mortem manner, predictive monitoring
aims at predicting whether or not an ongoing case will end up in a normal or a deviant
category upon its completion – for example predicting whether or not an ongoing case
will lead to a customer complaint or a deadline violation. Deviance mining and pre-
dictive monitoring techniques have overlapping inputs but distinct outputs. Deviance
mining techniques take as input a set of traces classified into normal and deviant, and
returns a set of rules that explain the deviance. Predictive process monitoring tech-
niques additionally take as input the incomplete trace of a running case of the process,
and they return a prediction of the outcome of this case.

Given their overlapping inputs, predictive monitoring and deviance mining tech-
niques have common concerns. Specifically, they both have to deal with the question of
how to extract features from the set of historical traces in order to construct a classifier
– with the difference that in predictive monitoring, one has to take into account the
fact that the classification is done with respect to the trace prefix of an incomplete case,
and thus the “state” of execution of the current case needs to be taken into account.
Not surprisingly, some of the feature extraction methods mentioned above can also be
found in the context of predictive monitoring. For example, [Maggi et al. 2013] consid-
ers both individual activity features as well as frequent sequential patterns, whereas
[Leontjeva et al. 2015] extends these features with others, including the index in the
trace where a given activity occurs (e.g. does a given activity occur in the first or second
position in the trace?) as well as other features extracted from hidden markov models
constructed from the historical traces. [de Leoni et al. 2016] provides a framework for
feature extraction that additionally considers the counts of individual activity occur-
rences and their index as possible features, as well as a range of other features related
to the data-flow and the resource perspective (e.g. current value of a given variable
of the process, and current workload of a given resource). Similar features are also
employed in [Conforti et al. 2013; Conforti et al. 2015] to predict process risks. With
respect to these latter two works, the present article focuses on studying the predic-
tive power of control-flow features. On the other hand, it goes deeper by considering
not only individual activity features but also set-based and sequence-based patterns
as discussed above.

3. EVALUATION SETUP
This section presents the evaluation setup. First, it describes the datasets used; next
it outlines the methods used for feature extraction and for classification.

3.1. Datasets
We used six datasets derived from five real-life event logs. We selected these datasets
in order to cover classifications of “normal” and “deviant” cases based on temporal
and non-temporal criteria. Note that case and trace are used interchangeably in this
paper, as well as feature and pattern. In the former criterion, the difference between
deviant and normal cases is made on the basis of the process duration w.r.t. a duration
threshold (i.e. slow vs. normal processes); in the latter criterion, the difference between
types of cases depend on an outcome attribute of the case (e.g. failing or successful
outcome).

The six logs fall into two sets. The first set (including the first two logs in Table I
and II) is recorded software behaviors [Lo et al. 2009]. These two logs contain traces
in which every event is a software command. Every trace can be viewed as a series of
commands executed while using the software. The trace outcome is marked as “suc-
cessful” when the execution has no errors, and “failing” when the execution results in
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Dataset Deviance criterion Deviant class distribution
Schedule non-temporal 50%
MySQL non-temporal 50%
Hospital1 temporal 45%
Hospital2 temporal 44%
Insurance1 temporal 62%
Insurance2 non-temporal 71%

Table I: Labeling of the six datasets used for the evaluation.

Dataset
Normal Deviant Total Total Mean Mean
cases cases cases event event classes events

classes per case per case
Schedule 2,140 2,140 4,280 19 15 124
MySQL 51 51 102 16 16 24
Hospital1 448 363 811 26 14 18
Hospital2 15,929 12,847 28,776 32 8 10
Insurance1 1,921 3,195 5,116 13 7 20
Insurance2 79 197 276 19 6 16

Table II: Descriptive statistics for the six datasets.

an error (deviant case). The Schedule log was obtained from a Siemens system and
the MySQL log was obtained from the a MySQL database engine. These processes are
machine-based and highly repeatable.

By contrast, the second set (including the four remaining logs in Tables I and II), con-
tains weakly structured processes with intensive human involvement. The Hospital1
log pertains to a chest pain patient flow in an emergency department of an Australian
hospital. Traces are labelled as “quick” for cases that complete within a 180 minutes,
and“slow” (or deviant) otherwise.

The Hospital2 log is provided by another Australian hospital pertaining to the as-
sessment process of mental health patients from the time the patients are referred to
the hospital (as outpatients) to the time they are first assessed by qualified medical
personnel. A case is labelled as “quick” if the assessment process is completed within
5 days, or “slow” (or deviant) otherwise.

The Insurance1 log comes from an Australian insurance company and records an
extract of the instances of a commercial insurance claims handling process. Also for
this log, we used a temporal deviance criterion for classification, with “quick” being
the label for those cases that complete within 30 days, and “slow” otherwise. Also in
this case, slow cases are deviant cases.

The Insurance2 log is extracted from the Insurance1 dataset to evaluate the rela-
tionship between individual activities and non-temporal outcome. The two outcome la-
bels, “mistake” and “rejected”, are non-temporal that reflect the final decision on cases
(the latter is deviant). The two activities “Authorise Decline” and “Confirm Decline”
are also deliberately filtered out.

3.2. Model construction
The model construction has two stages: pattern mining and model training/testing.
Given a labeled event log (i.e. a log where each trace is labeled as “normal” or “de-
viant”), the first stage will mine and select features. The latter stage will then con-
struct a classifier by transforming the training traces into a vector space and using
standard classification techniques. In this context, a trace t is converted to a vector of
features (〈 f1, ...fn 〉, l), where fi(i = 1, 2, ..., n) is the value of the ith feature for trace t
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and l is the label (normal or deviant). The value is the frequency count of the feature
in the trace.

We use a feature selection technique as used in [Cheng et al. 2008] and [Lo et al.
2009]. This technique selects a feature based on a weight of its statistical correlation
with the outcome classes. The weight can be, for example, information gain or Fisher
score. Fisher score is used in this paper in the same way as [Lo et al. 2009]. Basically,
in the first place, this technique selects an initial set of frequent features based on a
support (frequency) level. Then, Fisher scores are computed for all features. Finally, it
selects a final set of features by sequentially checking each feature from a high to low
Fisher score ranking and selecting one that covers at least one trace from the trace
database.

In this technique, the number of features selected is controlled by two parameters:
minimum support level and coverage threshold. According to [Cheng et al. 2008], the
support level has an impact on the discriminative power. A minimum support level of
0.25 is used for all feature types. The coverage threshold θ is used in the final selection
step, in the way that any trace covered by more than θ features will be excluded from
being checked against the next features for coverage. The aim is the final feature set
will contain high-score features that can cover as many traces as possible, without be-
ing overly concentrated on a small proportion of traces. A common coverage threshold
of 5 is used for all feature types.

In the second stage, to construct classifiers from the labeled samples, we can use
a range of methods. Given that we seek an explainable classifier, a natural choice is
decision tree learning, which produces trees from which human-readable rules can be
extracted. This is the approach employed for example in [Suriadi et al. 2013; Bose and
van der Aalst 2013; Sun et al. 2013]. Hence, we include decision trees (C4.5 method
implemented in RapidMiner) as a baseline in the evaluation. We also include a k-
NN (k-Nearest Neighbors) classification method in the evaluation as an example of a
simple classification technique that does not construct an explicit classification model,
but instead classifies a given sample based on its most similar samples. Specifically,
given a sample, the k nearest neighbors are found and the class (normal or deviant)
that is most common among neighbors in the training set is used to classify the given
sample. We set the value of parameter k to 8, after initial trial-and-error to find a value
yielding higher accuracy. Although no rules can be extracted from a k-NN classifier, the
output of k-NN is explainable in the sense that given a trace t, one can show which
“similar” traces have been used to classify trace t as normal or deviant. Finally, we
included neural networks in the evaluation as representative of a method that can
adjust itself to the data and handle large feature sets [Zhang 2000] even though it
does not produce explicit (understandable) rules as decision trees do.

Different tools are used for feature mining and classification. Tandem/maximal re-
peats and their alphabet variants are mined using the Signature Discovery plug-in in
ProM [Bose and van der Aalst 2013], while iterative pattern mining is based on the
implementation in [Lo et al. 2009]. Set-based pattern mining is implemented using the
FP-Growth algorithm for frequent item set mining [Han et al. 2000]. Tools for classifi-
cation model training and testing are built on libraries and workflows of RapidMiner
v6.0.

Five-fold validation is used consistently from pattern mining to model training and
testing. A log is randomly divided into five training and five testing datasets with
80/20 proportion of original traces, respectively. The class distribution in the training
and testing data remains the same as that in the original data. The training dataset is
only used for mining patterns and producing the classification model, and the testing
dataset is only used for testing the trained model. This is, indeed, aligned with pattern-
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Fig. 2: Predictive Accuracy(1).

based comparative methods used in [Cheng et al. 2008], [Lo et al. 2009], [Deshpande
et al. 2005] and [Lee et al. 2011].

The deviant class is usually rare in many datasets as compared to the non-deviant
class. This skewed class distribution is unexpected because we want to discover de-
viant features and test their discriminative power. However, support-based frequent
pattern mining tend to return only features of the dominant class; as a consequence,
the training model built would be biased towards the dominant class. In this case, the
prediction on the skewed data could be highly accurate but of little use in practice. To
address this challenge, oversampling is used for training data to increase the popula-
tion of the deviant class by randomly duplicating its traces. In this way, the training
data of Schedule, MySQL and Hospital2 dataset have been balanced.

4. ACCURACY EVALUATION
We measured classification accuracy in terms of the standard notion of accuracy de-
fined as tp+tn

tp+tn+fp+fn , where tp is the number of traces correctly classified as deviant
(true positives), tn is the number of traces correctly classified as normal (true nega-
tives), fp is the number of false positives and fn is the No. of false negatives. Addition-
ally, we also report on the Area Under the ROC Curve (AUC) of each classifier. The AUC
corresponds to the probability that a random negative sample is ranked higher than a
random positive sample in the list of samples ranked from most likely to least likely
to belong to the deviant class. AUC has been shown to be suitable for evaluating the
accuracy of classification techniques both for balanced and unbalanced datasets [He
and Garcia 2009]. This choice makes the results more comparable across the datasets.

The prediction result is shown in Figure 2 - 5. For the Schedule dataset, the IP, TR
and TRA patterns provide the highest result (from 88 to 90%). For the MySQL dataset,
the MR and IP patterns score the best (100%). For the Insurance2 dataset, the IP and
SET patterns provide a slight improvement over the IA baseline (85.45% vs. 84% and
0.937 vs. 0.916). However, for other datasets (Hospital1, Hospital2 and Insurance1),
we observed that the composite patterns have virtually no improvement over the IA.

Table III shows the average Fisher scores computed on the list of selected features
for each feature type. Clearly, the features with better predictive power has higher av-
erage Fisher score than others. This is evident in the case of IP/Schedule and MR &IP
/MySQL (X/Y refers to a pair where X is the feature type and Y is the dataset). Like-
wise, IP/Insurance2 is highlighted with higher average Fisher score than the others.
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The list of selected features ranked by Fisher scores indeed supports that feature
types with higher predictive accuracy do provide a number of highest scored features.
For example, IP/Schedule has quite many patterns with high scores (see Figure 6)
whereas IA/Hospital1 dominates the ranking (see Figure 7&7).

Another observation is the composite patterns, i.e. non-IA, achieve higher accu-
racy than IA only when the case outcome is not temporal, e.g. Schedule and MySQL
datasets. In other words, if the outcome is temporal, IA patterns likely carry most of
the outcome-related signals since case duration is usually susceptible to the activity
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Fig. 6: Selected Features and Fisher scores (IP/Schedule). Every number represents
one activity, e.g. ‘364’ is one activity.
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Dataset IA MR MRA TR TRA IP SET
Schedule Fisher Score 0.0381 0.056 0.061 0.022 0.026 0.376 0.107

No. of Features 17 45 39 46 28 31 93

MySQL Fisher Score 0.002 ∞ 0.616 0.0016 0.0018 152,985 0.003
No. of Features 5 9 7 4 3 13 9

Hospital1 Fisher Score 0.03 0.026 0.025 0.053 0.055 0.024 0.032
No. of Features 21 26 28 11 11 66 100

Hospital2 Fisher Score 0.019 0.053 0.053 0.03 0.03 0.065 0.067
No. of Features 32 9 9 2 2 21 22

Insurance1 Fisher Score 0.052 0.049 0.039 0.049 0.044 0.06 0.039
No. of Features 13 27 33 27 29 76 80

Insurance2 Fisher Score 0.044 0.065 0.075 0.065 0.066 0.1 0.164
No. of Features 18 21 22 19 18 31 35

Table III: Average Fisher scores by feature types.
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Fig. 8: Selected Features and Fisher scores (IP/Hospital1). Every numeric code repre-
sents one activity, e.g. ‘17’ is one activity.

execution, i.e. the longer a case is, the more activities it has as observed in Hospi-
tal1, Hospital2 and Insurance1. Similarly, in the case of Insurance2, we deliberately
use non-temporal outcome criterion and filter our related activities. As a result, the
highest accurate feature type is SET.

In conclusion, three observations arise from our experiments. First, IA captures most
of the signals if the deviance outcome is temporal. Second, composite patterns are
highly predictive in case of structured processes, e.g. Schedule and MySQL datasets.
Finally, in case of less structured processes, composite patterns yield negligible im-
provement over IA, possibly because most of outcome-related signals have been cap-
tured by IAs or non-activity features, e.g. resource and data.

Execution times. All experiments were executed on a laptop with 2.5GHz Intel CPU
Dual Core, 8GB internal memory, and 64-bit Windows operating system. Fig. 9 shows
the average feature mining runtime from five-fold iterations. In relation to the dataset
characteristics presented in Table II, factors affecting mining performance are likely
involved with the number of events per case, the number of event classes per case and
the data size (total number of cases). This is observed in case of the Schedule dataset
with exceptionally long cases, Hospital2 with shortest average cases but largest data
size, Insurance1 with quite large data size but low number of event classes per case.
Mining techniques respond to different degrees to data characteristics. For example, it
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can be observed that MRA is highly sensitive to the number of events per case while
IP is not; and SET is more susceptible to the number of event classes per case.

5. RULES INTERESTINGNESS EVALUATION
We extracted rules from the six datasets across seven feature types using decision tree
classifier. This technique takes the path from a leaf node of the tree to the top as a
rule. All decision trees are trained with uniform input parameters. As a result, there
are seven rulesets for each dataset, one per feature type. The rule has the form of
A => B, where the antecedent A is a conjunction of multiple selectors in the form of
attribute OP value with OP as relational operator, and the consequent B is the class
label.

For each dataset, we compare the quality of these rulesets on a number of selected
measures and observe the effect of pattern types on the rules quality. The measures
used in our evaluation include:

•Rule Length: the number of operators in the antecedent part of the rule. This is
averaged from all rules of a ruleset.
•%Generalization [Gallion et al. 1993]: the generalizability based on the number of

training examples and the number of rules.

%Generalization = (1− #ofRules

#ofTrainingExamples
) ∗ 100 (1)

•Probability-based Objective Rule Interestingness Measures. [Geng and Hamilton
2006] evaluates 38 interestingness measures with reference to 12 desired proper-
ties. The authors ranked these measures in terms of how much they hold a property
(Table V in [Geng and Hamilton 2006]). Based on this evaluation, we were able to se-
lect six top measures as listed below (noted that Yule’s Q and Yule’s Y are normalized
variants of Odd Ratio [Tan et al. 2004]). Readers should refer to [Geng and Hamilton
2006] for a detailed discussion on these measures while a brief description is given
below.
— Collective Strength (CS ): proposed in [Aggarwal and Yu 1998] to replace the

support-based paradigm in frequent itemset mining. The original idea is to mea-
sure the collective strength of an itemset I as CS(I) = GoodEvents

E[GoodEvents] ∗
E[BadEvents]
BadEvents] ,

where Good Events mean the items of the itemset are present in most of trans-



13

actions and Bad Events are when they are not. In the context of rule evaluation,
Good Events are when A and B are strongly correlated, and the opposite are Bad
Events. The collective strength CS ranges from 0 to +∞. If CS = 0, A and B are
mutually exclusive (perfect negative correlation). If CS = 1, A and B are totally in-
dependent. If CS increases to +∞, A and B are increasingly positively correlated.

CS =
P (AB) + P (¬B|¬A)

P (A)P (B) + P (¬A)P (¬B)
∗ 1− P (A)P (B)− P (¬A)P (¬B)

1− P (AB)− P (¬B|¬A)
(2)

— Two-Way Support (TWS ): proposed in [Yao and Liu 1997] to search for interesting
knowledge in multiple databases. This measure ranges from −∞ to +∞. If it ap-
proaches +∞, the relation A => B increases and vice versa, the relation B => A
increases when it approaches −∞.

TWS = P (AB) ∗ log2
P (AB)

P (A)P (B)
(3)

— φ− Coefficient : this measure is based on Pearson correlation coefficient which
ranges between -1 and +1. When it is greater than 0, A and B are positively corre-
lated. When it equals 0, A and B are independent. When it is less than 0, A and B
are negatively correlated.

φ− Coefficient =
P (AB)− P (A)P (B)√
P (A)P (B)P (¬A)P (¬B)

(4)

— Piatetsky-Shapiro (PS ): originally proposed in [Piatetsky-Shapiro 1991], this mea-
sure reflects the variance of probability when A and B are correlated and indepen-
dent, with values ranging from -0.25 and 0.25. If PS is zero, A and B are totally
independent. If PS is greater than 0, A and B are positively correlated, and vice
versa, less than 0 when A and B are negatively correlated.

PS = P (AB)− P (A)P (B) (5)

— Yule’s Q (YuleQ): this is a normalized version of Odds Ratio (OR) [Mosteller 1968],
and based on the contingency table involving A and B. Yule’s Q ranges from -1
(perfect negative correlation) to +1 (perfect positive correlation).

OR =
P (AB)P (¬A¬B
P (A¬B)P (¬AB)

(6)

YuleQ =
OR− 1

OR+ 1
(7)

— Information Gain (IG): this measure is related to the Lift measure P (AB)
P (A)P (B) , i.e.

how many times it needs to lift the confidence from the case when A and B are
totally independent P (A)P (B) to the case when A and B are statistically correlated
P (AB). IG ranges from −∞ (negatively correlated) to +∞ (positively correlated).

IG = log
P (AB)

P (A)P (B)
(8)
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5.1. Patterns and Rules
Across all datasets and feature types, we observe that patterns with high Fisher score
are often chosen to form rules with high coverage based on the number of cases cov-
ered. This is justifiable because the Decision Tree would pick up these patterns as
preferable splitting points based on their strong discriminative power (Gini index is
used for Decision Tree in our experiment). The higher Fisher score a pattern has, the
more rules they take part in and the higher coverage those rules are. Several repre-
sentative examples are reviewed in details as follows.

In particular, IP/Schedule provides a remarkable pattern: ”364 198 361” (every num-
ber represents one activity). The related high-coverage rule is: IF ”364 198 361” ≥
0.500 THEN failing, meaning if this pattern occurs, the trace would have a failing out-
come. Conversely, no IA-based rules are formed based on these three events, meaning
activities individually do not carry any outcome-related signals.

For the Hospital1, a remark is that most rules contain the ”Nursing Progress Notes”
activity which has the top Fisher score. In this process, ”Nursing Progress Notes”
seems to dominate the relationship with the duration-based outcome, i.e. if there are
more ”Nursing Progress Notes”, the case would last longer.

For the Insurance1, the IA-based rules basically have similar forms as the IP- and
MR-based if composite patterns are broken down into individual activities. Although
some IP- and MR-based patterns have slightly higher scores than the best of IAs, for
example ”1 13 16” (0.344 vs. 0.159) and ”1 16” (0.292 vs. 0.159), but it is not substantial
as in the case of the Schedule dataset. That’s possibly the reason why IP has a better
predictive result than other features but cannot surpass IA.

For Insurance2, notably some IP- and SET-based patterns have higher Fisher scores
than IA and others. Specifically, there is one remarkable IP-based rule: IF ”Process
Additional Information, Contact Customer” ≥ 0.5 THEN Rejected Case (51% coverage),
meaning if ”Process Additional Information” and ”Contact Customer” occur together,
the case would be rejected. We observed that the IA also provides rules relating to
”Process Additional Information” and ”Contact Customer” but its rules are longer with
other activities included. This is likely related to the fact that though ”Process Addi-
tional Information” and ”Contact Customer” rank very high in IA feature list, they are
lower than the IP-based patterns.

In this analysis, it is more evident that IAs likely carry most of the outcome-related
signals in case of temporal outcome criterion (Hospital1 and Insurance1). Composite
patterns, however, contribute some interesting rules (Schedule and Insurance2).

5.2. Rules Interestingness Measures
Different metrics are used to evaluate the quality of a ruleset. Rule Length is computed
by averaging length of individual rules. %Generalization is computed according to for-
mula (1). For probability-based measures, cumulative interestingness is computed by
firstly sorting rules within a ruleset in decreasing order of the measure values, then
accumulating these values from the highest to lowest. The cumulative measure for one
feature type is visualized as an upward curve by the number of rules (Fig. 10,11,12).

Our observation is summarized as follows with selected graphs for illustration due
to space limitation.

For the Schedule, the IP-based ruleset has consistently high interestingness over the
others, except in φ-Coefficient where the TR and TRA are the best (Fig. 10). Notably,
IP-based ruleset also achieves the highest predictive outcome, as well as TR and TRA.
Rule Length and %Generalization are quite similar across feature types.

For the MySQL, similar to the Schedule dataset, IP-based and MR-based ruleset
show the best cumulative interestingness, which accords with their high predictive
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Fig. 10: Schedule dataset - φ-Coefficient and Piatetsky-Shapiro

strength (Fig. 11). They also have the shortest length and the greatest %Generalization
(Rules were not generated for several feature types due to pruning parameters).
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Fig. 11: MySQL dataset - Rule Length & %Generalization

For the Hospital1, the MRA-based and IP-based ruleset have higher cumulative in-
terestingness than others in all measures (Fig. 12). They also have high %Generaliza-
tion after the IA-based. All rulesets are approximately equal in rule length.

For the Hospital2 dataset, all rulesets are balanced across all measures, which cor-
responds to their equal predictive power and Fisher score as shown in section 4 and
5.1. For the Insurance1 dataset, similar to the Hospital1 dataset, the MRA-based and
IP-based rulesets are higher than others in all interestingness measures. The IP-based
and Set-based have slight improvement over others in Rule Length and %Generaliza-
tion. For the Insurance2 dataset, the MRA-based cumulatively outperforms others in
all measures except φ-Coefficient, Yule’s Q and Information Gain where the Set-based
is the best.

In summary, across all datasets, the IP-based, MRA-based and Set-based ruleset are
often at the top of the cumulative interestingness measurement. The IP-based often
results in shorter length and higher %Generalization. The IA-based ruleset is often
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Fig. 12: Hospital1 dataset - φ-Coefficient and Piatetsky-Shapiro

below the others in most of the measures, except in Yule’s Q and Information Gain
where it improves after more rules are added to the ruleset. In short, rulesets based
on composite patterns has higher interestingness than those based on IA.

6. CONCLUSION
Our review of the state of the art has revealed that existing techniques for business
process deviance mining are based on the extraction of patterns from business pro-
cess execution traces using either individual activity frequency or frequent or discrim-
inative pattern mining approaches. The empirical evaluation has unveiled evidence
that, in the context of structured (predictable) business processes, pattern mining ap-
proaches clearly outperform the basic approach based on individual activity frequency
in terms of accuracy. On the other hand, in the case of business processes with high
level of variability, the accuracy improvement obtained by using pattern mining ap-
proaches is negligible. The latter observation suggests that when business processes
have high variability, no clear composite patterns emerge, and thus such patterns do
not add predictive power over simple activity counts. However, we observed that the
use of composite patterns (be them frequent or discriminative ones) generally has a
positive effect on the interestingness of the mined rule sets.

In the case of processes with high variability, the maximum accuracy (AUC) achieved
is around 80%, which might be insufficient in many practical applications. Underlying
this limitation is the fact that the reviewed techniques for business process deviance
mining treat the input as consisting of simple symbolic sequences, i.e. sequences of
simple symbols (tokens) representing in our case activity or event occurrences. In some
cases, including all six datasets used in this study, business process execution logs
consist instead of temporal complex symbolic sequences, i.e. sequences of timestamped
events, each event with a payload consisting of attribute-value pairs. Such logs can
be extracted for example from appropriately instrumented information systems, such
as patient management systems (in the case of healthcare processes) or claims hand-
ing systems (for insurance claims), or from mainstream Enterprise Resource Planning
systems. It is likely that data payloads associated with events can convey significant
information regarding possible deviances and thus cannot be ignored as in the tech-
niques evaluated in this paper.

A direction for future work is thus to develop and apply techniques for extracting
(discriminative) patterns from complex symbolic sequences – a non-trivial and open
problem as noted in [Xing et al. 2010]. While tackling the problem of complex symbolic
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sequence mining in the general case is challenging, it may be possible to reduce the
problem of business process deviance mining to well-scoped subsets of this problem,
for example by taking advantage of information contained in available process models,
such as which activities read/update which data attributes, which data attributes are
used to make a decision in the process, etc., in order to prune the pattern search space.
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