
Discovering Interacting Artifacts from ERP Systems
(Extended Version)

Xixi Lu1, Marijn Nagelkerke2, Dennis van de Wiel2, and Dirk Fahland1

1 Eindhoven University of Technology, The Netherlands
2 KPMG IT Advisory N.V., Eindhoven, The Netherlands.

(x.lu,d.fahland)@tue.nl
(Nagelkerke.marijn,vandewiel.dennis)@kpmg.nl

Abstract. The omnipresence of using Enterprise Resource Planning (ERP) sys-
tems to support business processes has enabled recording a great amount of (re-
lational) data which contains information about the behaviors of these processes.
Various process mining techniques have been proposed to analyze recorded in-
formation about process executions. However, classic process mining techniques
generally require a linear event log as input and not a multi-dimensional rela-
tional database used by ERP systems. Much research has been conducted into
converting a relational data source into an event log. Most conversion approaches
found in literature usually assume a clear notion of a case and a unique case iden-
tifier in an isolated process. This assumption does not hold in ERP systems where
processes comprise the life-cycles of various interrelated data objects, instead of
a single process. In this paper, a new semi-automatic approach is presented to
discover from the plain database of an ERP system the various objects supporting
the system. More precisely, we identify an artifact-centric process model describ-
ing the system’s objects, their life-cycles, and detailed information about how the
various objects synchronize along their life-cycles, called interactions. In addi-
tion, our artifact-centric approach helps to eliminate ambiguous dependencies in
discovered models caused by the data divergence and convergence problems and
to identify the exact “abnormal flows”. The presented approach is implemented
and evaluated on two processes of ERP systems through case studies.

Keywords: Process Discovery, Artifact-Centric Processes, Outlier Detection, Rela-
tional Data, Log Conversion, ERP Systems

1 Introduction

Information systems (IS) not only store and process data in an organization but also
record event data about how and when information changed. This “historical event
data” is often used to analyze, for instance, whether information processing in the past
conformed to the processes in the organization or to compliance regulations. For exam-
ple, has each order by a gold customer been delivered with priority shipping, or have
all delivery documents been created before creating the invoice? The manual analysis
of historic event data is time consuming and error-prone as often hundreds of thousands
of records need to be checked.

Documents Changes

 Change id Date changed Reference id Table name Change type Old Value New Value

1 17-5-2020 S1 SD Price updated 100 80

2 19-5-2020 S1 SD Delivery block released X -

3 19-5-2020 S1 SD Billing block released X -

4 10-6-2020 B1 BD Invoice date updated 20-6-2020 21-6-2020

Billing documents (BD)

BD id Date created Document type Clearing date

B1 20-5-2020 Invoice 31-5-2020

 B2 24-5-2020 Invoice 5-6-2020

Delivery documents (DD)

DD id Date created Reference SD id Reference BD Document type Picking date

D1 18-5-2020 S1 B1 Delivery 31-5-2020

D2 22-5-2020 S1 B2 Delivery 5-6-2020

D3 25-5-2020 S2 B2 Delivery 5-6-2020

D4 12-6-2020 S3 null Return Delivery NULL

Sales documents (SD)

SD id Date created Reference id Document type Value Last change

S1 16-5-2020 null Sales Order 100 10-6-2020

S2 17-5-2020 null Sales Order 200 31-5-2020

S3 10-6-2020 S1 Return Order 10 NULL

F1

F2

F4
F3

Parent

table

Child

table

Fig. 1: The tables of the simplified OTC example

Process mining [1] offers automated techniques for this task. The most prominent
technique is to discover from historical event data a graphical process model describ-
ing all historic behaviors; the discovered model can be visually explored to identify the
main flows and the unusual flows of the process. Process analyst and domain expert can
then for instance identify the historic events that correspond to unusual flows, investi-
gate circumstances and possible causes for this behavior, and devise concrete measures
to improve the process [2]. The success of the analysis often depends on whether un-
usual behavior is easy to distinguish visually from normal behavior. Prerequisite to this
analysis is a process event log that describes how all information changes occurred from
the perspective of a particular process; its underlying assumption is that each event can
unambiguously be mapped to a particular case of the process.

1.1 Problem Description

In the more general case, information access is not tied to a particular case of a process;
rather the same information can be accessed and changed from various processes and
applications. A typical example are Enterprise Resource Planning (ERP) systems which
organize all information in documents related to each other through one-to-many and
many-to-many relations; information changes occur in transactions and the completion
of a transaction is logged as an event also called transactional data. All data relevant
for the analysis is stored in a relational database.

Figure 1 shows a simplified example of the transactional data of an Order to Cash
(OTC) process supported by SAP systems; Fig. 2 visualizes the events stored in these
tables related to the creation of documents. There are two sales orders S1 and S2; cre-
ation of S1 is followed by creation of a delivery document D1, an invoice B1, another
delivery document D2, and another invoice B2 which also contains billing information
about S2. Creation of S2 is also followed by creation of another delivery document D3.
Further, there is a return order S3 related to S1 with its own return delivery document
D4. The many-to-many relations between documents surface in the transactional data:
a sales document can be related to multiple billing documents (S1 is related to B1 and
B2) and a billing document can be related to multiple sales document (B2 is related to
S1 and S2). This behavior already contains an unusual flow: two times delivery doc-

PAGE 34

15-5 20-5 25-5 9-6

S1 created on 16-5

D1 created on 18-5

D2 created on 22-5

B1 created on 20-5

B2 created on 24-5

S2 created 17-5 D3 created 25-5

B2 created 24-5

S3 created on 10-6

D4 created on 22-5

Creation of documents related to S1

Creation of documents related to S2

Timeline

Fig. 2: A time-line regarding the creation of documents of the OTC example.

uments were created before the billing document (main flow), but once the order was
reversed (B2 before D3).

The main research problem addressed in this paper is to provide (semi-)automated
techniques to

(1) discover from the relational transactional data of an ERP system an accurate graph-
ical model describing all transactions and their order, and

(2) identify main flows and unusual flows and highlight the latter ones.

Classical process mining techniques cannot be applied directly. Many previous studies
have shown that an attempt to cast transactional data over objects with many-to-many
relations into a single process event log and discovering a single process model describ-
ing all transactional data is bound to fail. It leads to false dependencies between events
and duplicate events which obscures the main flow and hinder the detection of unusual
flows [3] [4] [5] [6] [7].

1.2 Proposed Solution

We propose to approach the problem under the “conceptual lens” of artifact-centric
models [8, 9]. An artifact is a data object over an information model; each artifact in-
stances exposes services that allow changing its informational contents; a life-cycle
model governs when which service of the artifact can be invoked; the invocation of a
service in one artifact may trigger the invocation of another service in another artifact.
Information models of different artifacts can be in one-to-many and many-to-many rela-
tions, which allows to describe behavior over complex data in terms of multiple objects
interacting via service invocations. We apply the artifact-centric view to our problem
as follows: each document of an ERP system can be seen as an artifact; transactions
on the document are service calls on the artifacts; behavioral dependencies between
transactions of documents can be seen as life-cycle behavior and dependencies of ser-
vice calls. With these concepts, the transactional data of Fig. 1 can be described as the

Fig. 3: Artifact-centric model of the behavior in Fig. 1

artifact-centric model of Fig. 3. The model visualizes the order in which objects are
created and also highlights the unusual flow of invoice B2 being created before delivery
D2.

The problem of discovering an artifact-centric process model from relational ERP
data decomposes into two sub-problems:

(1) Given a relational data source, identify a set of artifact types on the database level,
extract for each artifact type an event log and discover its life-cycle.

(2) Given a relational data source, a set of artifact types and their corresponding set
of logs, identify interactions between the artifact types, between their instances,
between their event types and between their events. As a result, obtain a complete
artifact-centric process model.

Figure 4 shows the overview of our approach. The flow of our approach that ad-
dresses the first problem of discovering artifact’s life-cycles is shown by the filled arcs,
whereas the second problem of discovering interactions between artifacts is addressed
by the flow shown by the dashed arcs. In a nutshell, (1.1) we use the data schema to
discover artifact schemas from which (1.2) we discover artifact types; each artifact type
describes the information model of one artifact in terms of the attributes found in the
data source. Each record in the data source defines an artifact instance. For each artifact
type, (1.3) we extract its instances and all related events; all events related to one arti-
fact instance are grouped together into a case of this instance and ordered by time. The
case describes how the artifact instance evolved over time. All cases together yield the
event log of the artifact type. (1.4) We feed the event log of an artifact type to existing
process discovery algorithms to obtain the life-cycle model of the artifact type. In par-
allel, (2.1) we use the foreign key relations in the data schema to discover interactions
between artifact types and instances. (2.2) This information about interactions between
artifact instances is also added to the respective cases in the extracted event logs. (2.3)
We then propose two different techniques to derive from the interactions between cases
interactions between the events of the different cases. (2.4) Interactions between events
are then generalized to interactions between life-cycle models.

We implemented our approach and conducted two case studies. In both case studies
the discovered process models were assessed as accurate graphical representations of

the source data; insights about unusual flows could be obtained significantly faster than
with existing best practices. Thereby, we also learned that the steps of (1.1-1.2) of iden-
tifying artifact types and steps (2.1-2.4) are tightly related due to relations in the original
relational data source. By choosing whether a relation is contained inside one artifact
type or between two artifact types, one also chooses whether there is an interaction
between artifacts or not. In this paper, we will show that by moving all one-to-many
and many-to-many relations between artifact types in (1.1-1.2), the life-cycle models
discovered in (1.4) have higher quality and the interactions discovered in (2.1-2.4) are
meaningful to business users.

The remainder of this paper is structured as follows. In Section 2, we provide a de-
tailed problem analysis using a running example, showing the limitations of classical
log conversion approaches and motivating the use of an artifact-centric approach in-
stead. Section 3 discusses related work. Section 4 illustrates our extended approach to
identify artifacts and their life-cycles from a given relational data source. In Section 5,
we discuss interactions between artifacts on different levels and show how to identify
these interactions to obtain a complete artifact-centric model. The methodology used to
conduct artifact-centric process analysis is presented in Section 6. We implemented our
technique and report on two case studies in Section 7. Section 8 concludes the paper.

2 Problem Analysis

In this section, we first introduce a running example that is used throughout the paper to
demonstrate the concepts used in this paper and our approach. Using the running exam-
ple, we then discuss why classical log conversions and process discovery techniques fail
to analyze ERP data sets. Then we introduce the artifact-centric approach and show that
it is better suited to describe ERP data sets allowing for a variety of results depending
on user choices.

2.1 Running Example

To illustrate the problem of process discovery from ERP data, we consider a simplified
variant of the Order to Cash process supported by SAP systems and use this as our
running example throughout the paper. In short, the OTC process starts with customers
placing orders. Then, the organization fulfills the orders by delivering the goods and
sending invoices to bill the cost and receive payments from customers. Organizations
use an ERP system to store documents of sales orders, deliveries, invoices and payments
that are related to the OTC process in tables similar to those shown in Figure 1. We
briefly explain the process executions that have led to the data in Figure 1, focusing
only on the creation of documents for the sake of brevity. First, a customer placed a
sales order S1, which is created in the system on May 16th. Then a partial delivery D1
is done on May 18th, and the related invoice B1 is created two days later. On May 22th,
another part of the sales order S1 is delivered according to the delivery document D2
which is invoiced with document B2 on May 24th. On May 17th, the same customer
places another sales order S2, which is also invoiced within the same billing document
B2. However, the delivery D3 related to the sales order S2 is executed after the billing

Artifact types

Database schema

Artifact schemas

Event logs

Life-cycles

Artifact-centric process model

Data
Source

Import data
schema

Use XTract

1.1 Discover
Artifact Schemas

(Sect. 4.3)

1.2 Discover
Artifacts

(Sect. 4.4)

1.3 Extract Logs
(Sect. 4.5)

1.4 Discover
Life-cycle
(Sect. 4.7)

2.1 Discover
artifact type level

interactions
(Sect. 5.2)

2.2 Extract
artifact instance
level interactions

(Sect. 5.3)

2.3 Discover
event type level
and event level

interactions
(Sect. 5.4)

Refine or
select by users

Refine or
select by users

Case 1
Case 2

…
Case n

Case 1
Case 2

…
Case n

Case 1
Case 2

…
Case n

2.4 Discover
Artifact-centric

Model (Sect. 5.5)

Discovering artifacts
Discovering interactions

Fig. 4: An overview of our approach.

document B2 on May 25th. Days later, a return order S3 is placed for the sales order
S1 and return delivery D4 is executed. A time-line of the events related to the creations
is shown in Figure 2, in which a distinction is made between the creation of documents
that is related to the sales order S1 (above the line in Figure 2) or to S2 (below the line
in Figure 2).

The data related to these executions are stored in four tables Sales Documents(SD),
Delivery Documents(DD), Billing Documents(BD), and Document Changes(DC) shown
in Figure 1. The table SD contains the two sales order documents S1 and S2 and the
return order document S3. The foreign key F1 relates the sales documents to each other.
The DD contains the three delivery documents D1, D2 and D3 and the return delivery
document D4. The delivery and return delivery documents are related to the sales doc-
uments via foreign key F2. The two invoices B1 and B2 are stored in the table BD have
relations with the delivery documents via foreign key F3. Any changes related to the
documents are stored in the table Document Changes.

2.2 Classical Log Conversion and Process Discovery

Process mining is a set of techniques to “discover, monitor and improve real processes
(i.e., not assumed processes) by extracting knowledge from event logs” [10]. In this
paper, we focus on process discovery, which aims to discover a process model from a
given event log.

In general, an event log comprises a list of traces of which each trace contains all
events that occurred in a case, i.e., an execution of the process. Each event may be char-
acterized by various attributes, e.g., a timestamp, correspond to an activity, is executed
by a particular person. Therefore, to be able to apply process discovery techniques,
relational data sources have to be converted into an event log.

Classical log conversion and extraction approaches [3–7] tend to extract an event
log from a relational data source based only on one notion of a case. These approaches
first (try to) identify or define one notion of a case. After specifying or selecting the
event types related to the defined case notion, the approaches collect the events found
in the data source that are associated with the defined cases. The extracted events are fi-
nally sorted by cases and time and written into one event log. These approaches only ex-
tract one log for one process definition at a time, while assuming the process is isolated
and has no interaction with other processes or its system environment. For example, if
we consider the sales orders in the OTC example as our cases of the OTC process, we
can obtain the event log of Figure 5, by relating each creation event to one of the two
sales order cases. For example, Figure 5 shows that the sales order S1 trace has seven
events, each event has four attributes. While this method is straight forward, it leads to
two special problems arising from one-to-many relationships between the source tables.

Data Divergence The data divergence problem is defined as the situation when a case
is related to multiple events of the same event type. Figure 5 shows that the case sales
order S1 has two Delivery Created events D1 and D2 and two Invoice Created events
B1 and B2. If we draw a simple causality net by only using the trace S1, we obtain
the model shown in Figure 6 (left). Business users immediately notice the edge from

Event Id Event type Event timestamp Resource

S1 Order Created 16-5-2020 Dirk

D1 Delivery Created 18-5-2020 Dirk

B1 Invoice Created 20-5-2020 Dennis

D2 Delivery Created 22-5-2020 Marijn

B2 Invoice Created 24-5-2020 Marijn

S3 Return order Created 10-6-2020 Xixi

D4 Return Delivery created 12-6-2020 Xixi

Event Id Event type Event timestamp Resource

S2 Order Created 17-5-2020 Dirk

B2 Invoice Created 24-5-2020 Dennis

D3 Delivery Created 25-5-2020 Dirk

Trace : Sales Order S1

Trace : Sales Order S2

Event Log

Fig. 5: An conceptual event log of the OTC example

Invoice to Delivery and find this edge strange as they think the edge indicates that there
are invoices created before the related deliveries. However, this edge actually means
that there is an invoice B1 created before a delivery D2, both of which are related to
the sales order S1 but not related to each other. The complexity and ambiguity of the
process model increase when more deliveries and invoices are linked to the case, as
the divergence problem also introduces self-loops. Now, if we include the trace S2, a
similar model shown in Figure 6 (right) is discovered, in which the same abnormal edge
from Invoice Created to Delivery Created appears. However, this time there really is an
invoice B2 created before its related delivery document D3, which is an outlier and
might indicate risks or faulty configurations in the process.

The aim of conducting process analysis by business users is to produce rather sim-
ple process models that can be used to communicate with stakeholders and to identify
exactly the abnormal process executions that happened in reality. As the running exam-
ple shows, this aim is disturbed by the divergence problem. Solving data divergence is
therefore one of the goals of this paper.

Data Convergence The problem of data convergence is defined as the situation when
one event is related to multiple cases. For example, when considering the sales orders
as the notion of a case and the creation of invoices as events, the Invoice Created event
of the invoice B2, which is related to two different sales orders S1 and S2, is extracted
twice, as illustrated by the event log in Figure 5. Traditional process mining techniques
consider the event Invoice Created B2 as two different events. Together with the cre-
ation of invoice B1, we obtain three Invoice Created events as shown in Figure 6 (right),
whereas there are actually only two invoices B1 and B2. Thus, the data convergence
problem leads to extracting duplicate events and biased statistics.

Choosing different notions of a case for the process definition is proposed in [5] [6]
[7] as a solution to the divergence and convergence problem in traditional log extraction
approaches. However, while this might avoid some issues of converge and divergence,
it cannot solve these problems completely. Taking the OTC example, and choosing the
invoices as the case definition, the many-to-many relation between the invoices and
sales orders yields an event log suffering from divergence and convergence. Choosing
the deliveries as case definition solves the divergence problem, but worsens the conver-
gence problem. It is also very difficult to define or to retrieve an optimal definition of a
case from all possible case definitions found in relational data.

Fig. 6: Left: A causal graph of Sales Order S1; Right: A causal graph of the OTC
example.

2.3 Artifact-Centric Approach

The data divergence and convergence problems discussed in the previous section show
that the classical log conversion and mining approaches are unable to handle one-to-
any and many-to-many relations between cases and their events, which are frequently
observed in complex data models such as the ones employed by ERP systems. Such
a complex data model contains several logically defined objects that are relevant for

the business process execution (e.g., the objects such as the sales orders, deliveries
and invoices of the OTC example); each object has attributes and is related to other
objects (i.e. has interactions with each other). During process execution, instances of
these objects are created and related to other instances of other objects. Each of these
objects (and each instance of an object) has a real-life interpretation. In order to deal
with such complex processes, the artifact-centric approach has been proposed, which
describes a process in terms of how (all of) its objects evolve through an execution,
instead of a single monolithic process model [8, 9, 11].

An artifact is a conceptually relevant object (with a real-life interpretation) that
observes a life-cycle of updates from instantiation to some goal state. We use the term
artifact type to refer to the formal definition (i.e. the type) of an artifact and use the term
artifact instance when we refer to a particular instance of an artifact type. For example,
the notion of sales order documents can be considered as an business object, thus, an
artifact. The formally defined artifact type of this artifact is Sales Order which contains
an event type Created. The sales order S1 in the running example is an artifact instance
that belongs to the artifact type Sales Orders.

An artifact-centric model encapsulates all the artifacts that are engaged in such a
dynamic business process and visualizes the general life-cycle of each artifact. Actions
of the process move an artifact instance from one state to another until some goal state is
reached. Artifacts that are related to each other may influence each other, i.e., an action
on one artifact instance may trigger/lead to an action of a related artifact instance. In
other words, artifacts interact with each other.

Similar to finding an optimal notion of cases in the classical log conversion problem,
finding a set of optimal artifacts from a given data source is difficult and depends on the
goals of process analysis projects. Defining the scope of each artifact not only influences
the life-cycle of artifacts but also the interactions between the artifacts. In addition, there
is a trade-off between the number of artifacts and the amount of data per artifact, for
example, in terms of the number of tables related to an artifact, which again affect the
complexity of an artifact. This trade-off is depicted by Figure 7.

Number of artifacts

Amount of
data per
artifact

“left extreme”
- Classical log conversion

A
B

C
D

Fig. 7: The trade-off of defining artifacts

In this trade-off, the classical log extract represents the “left extreme” option which
minimizes the number of artifact (to one) and maximizes the amount of data per artifact
(to include all tables), thus, having only a single artifact containing all event data. The
“right extreme” option minimizes the amount of data per artifact (resulting in simple
artifacts) while maximizing the number of artifacts. Figures 29 and 6, obtained using
classical conversion approach, already show examples of the “left extreme” option.
Sections 2.3 and 2.3 discuss two examples of defining artifact types using the “right
extreme” options A and B, and Sections 2.3 and 2.3 show two examples C and D in
between. The artifact-centric models shown in this section are only to illustrate the
different ways of constructing artifacts and its subsequent effect on the interactions
between them, the exact meaning of the model is explained in Sections 4 and 5.

Example B - Tables as Artifact Types First we discuss a rather direct mapping from
tables to artifacts: each table defines one artifact, each datetime column defines an activ-
ity (or step) in the artifact. Figure 8 shows an artifact-centric model of the OTC example
consisting of three artifacts SD, DD, and BD (named after their originating tables and
denoted by large grey rectangles), each of which consists of one event type Created
(denoted by green rectangles within grey rectangles). Also, the self-loop on Created in
artifact SD shows that the activity Created has been executed twice in an instance of that
artifact. Finally, there is an interaction (denoted by arcs between green rectangles) from
the creation of artifact SD to the creation of artifacts DD which leads to the creation of
BD.

The model was obtained by mapping each table in Figure 1 to one artifact type and
a datetime column to one event type. For example, table SD to artifact SD, and the
datetime column Date created to activity Created.

One of the limitation of mapping one table to one artifact type and one column to
one event type is that one table may hold data of conceptually different artifacts, e.g.
sales orders and return orders are both stored in table SD. By considering these concep-
tually different artifacts as one artifacts, we lost the ability to distinguish the differences
in their life-cycles and their interactions towards other artifacts. For example, we can
not clearly see the sales orders S1 and S2 have interactions with delivery documents
and return order documents whereas the return order document S3 stored in the same
table only have relation to return delivery but no deliveries.

Fig. 8: Example B which maps each table as an artifact type.

Example A - Document Types as Artifacts A more fine-grained artifact-centric model
of the OTC example is shown in Figure 3. This model was obtained by mapping a
subset of a table to an artifact. For example, the table SD is mapped to two artifacts: the
subset related to the document type “sales order” is mapped to the artifact Sales Order,
whereas the other subset related to the document type “return order” constitutes the
artifact Return Order.

Mapping subsets of a table to different artifacts, we are able to distinguish the dif-
ference between sales orders and return orders, and between deliveries and return deliv-
eries. Moreover, and arguably more importantly, also the interactions between artifacts
get refined. For example, the model shows that according to the current data set, the
return deliveries have no relation with invoices whereas the deliveries do have invoices.
In addition, considering the one-to-many relations as interactions, the artifact-centric
model is able to show the true unusal flow (denoted by red arcs), i.e. the creation of an
invoice happened before the creation of its related delivery, in comparison to the models
shown in Figure 6 obtained using the classical log conversion.

Example C - Only One-to-One within Artifacts It is also possible to consider a set
of tables to be related to an artifact. For example, one can consider the sales orders and
their return orders and return deliveries as one artifact. Since there is only one-to-one
relations between sales orders and return orders and return deliveries, the obtained life-
cycle (process model) of this artifact do not have the data convergence and divergence
issues.

Figure 9 shows the artifact-centric model consisting of the artifact Sales Order and
the two artifacts Delivery and Invoice. Note that both relations within the artifacts as
well as the interactions between the artifacts are simple to interpret.

Fig. 9: Example C consists of artifacts within which only one-to-one references are
allowed

Example D - One-to-Many within Artifacts Defining more complex artifacts and
including non-one-to-one relation within artifacts is also an option (and is supported

by our approach). However, such artifacts increase the complexity of their life-cycles
and the interactions between them, making the derived artifact-centric model more
difficult to interpret. Figure 10 shows two artifacts: one is the Sales Order artifact
which includes the sales orders, deliveries, return orders, and return deliveries; the
other is the Invoice artifact. Since one sales order can be related to many deliveries,
we already observed the data divergence within artifact Sales Order, i.e. the self-loop
around the event type Delivery Created. It also increased the complexity of the in-
teractions between Sales Order and Invoice. While the model clearly describes that
Sales Order Created happened before the events Created of Invoice and the events
Created of Invoice before the Return Order Created, the specific inter-leavings between
the events Delivery Created and the events Created of Invoice are difficult to interpret,
but relevant to a business user.

Fig. 10: Example D consists of artifacts within which one-to-many relations are al-
lowed

To summarize, we have discussed various options to create artifact-centric mod-
els using the OTC example. In addition, the discussion shows that artifact-centric ap-
proaches are more general than and actually include the classical log conversion ap-
proaches (by mapping all data to one artifact). While artifact-centric approaches provide
a more dynamic way to analyze a data source with complex data structures, discovering
artifacts and interactions between them is crucial for conducting analysis.

3 Related Work

We discuss existing work along the main problems addresses in this paper: (1) discover-
ing conceptual entities and their relations from a relational data structure, (2) extracting
event logs from relational data structures, (3) discovering models or specifications of

a single entity/process from an event log, and (4) discovering/analyzing relations and
interactions between multiple objects and processes.
Entity discovery. The relational schema used in a database may differ significantly
from the conceptual entities which it represents, mostly to improve system perfor-
mance. Various existing works solve different steps along the way. After discovering
the actual relational schema from the data source [12–14], an (extended) ER model can
be retrieved that turns foreign keys between tables into proper relations between enti-
ties [15–17]. The artifact discovery problem faced in this paper (Sect. 4) differs from
this problem as one artifact type may comprise multiple entities as long as they are con-
sidered to be following a joint life-cycle, that is, multiple entities may grouped into the
same artifact type, such that convergence and divergence (see Sect. 2.2) do not arise.
This problem has been partly addressed in [18] through schema schema summarization
techniques [19] though convergence and divergence may still arise.

It is also possible to discover entities and artifact types from a raw event stream
(instead of a relational structure); the prerequisite is that each event carries enough
attributes and identifiers. The approach in [20] first reconstructs a simple relational
schema from all events and their attributes, two related entities can be grouped into the
same artifact if one entity is always created before the other (according to the event
stream); this extraction dismisses interactions between different artifacts which is cru-
cial to our approach (step 2.1 in Fig. 4. This work presents a first complete solution to
discovering entities, artifacts, and their interactions from relational data in Sect. 4 (steps
1.1 and 1.2 in Figure 4), and Sect. 5.1 (step 2.1).
Log Extraction. Existing work on extracting event logs from relational data sources
(step 1.3 in Figure 4) mainly focus on identifying a monolithic process definition and
extracting one event log where each trace describes the (isolated) execution of one pro-
cess instance. Manually approaches to extracting data from relational databases of SAP
systems particularly failed to separate events related to various processes; analyzing
what was part of the process was hard and time consuming [21, 22]. In the generic log
extraction approach of [5], the user defines a mapping from from tables and columns to
log concepts such as traces, events, and attributes (assuming the existence of a single
case identifier to which all events can be related); various works exist to improve find-
ing optimal case identifiers and relations between the identifiers and events [6,7,23]. If
the event data is structured along multiple case identifiers as in ERP systems, all these
approaches suffers from data convergence and divergence (Sect. 2.2). In this work, we
identify multiple artifact types (each having their own case identifiers) and separate
events into artifact types such that convergence and divergence do not arise; having
identified proper case identifiers and related events, we then reuse the approach of [5]
to extract an event log for each artifact type. No existing work extracts attributes that
describe the interaction between different artifact instances; we present a first solution
in Sect. 5 (step 2.2 of Fig. 4).
Model discovery. Much research has been conducted on the problem of discovering
a (single) process model from other information artifacts. Process mining [1] takes as
input an event log where each trace describes the execution of one process instance. An
event in the log is a high-level event corresponding to a complex user action or system
action, potentially involving dozens or thousands of method calls, service invocations,

and data updates. The log describes behavior that actually happened allowing to dis-
cover unusual and exceptional flows not intended by the original process design. Some
well known process discovery techniques are Alpha algorithm [24], (Flexible) Heuristic
miner [25], Genetic process mining [26], ILP mining [27], Fuzzy mining [28], and In-
ductive Mining [29] [30]. De Weerdt et al. [31] compared various discovery algorithms
using real-life event logs. Existing discovery techniques mainly focus on a single pro-
cess discovery and assume the model operates in an isolated environment. We will reuse
existing process discovery techniques when discovering artifact life-cycle models (step
1.4) and artifact interactions (step 2.3 of Fig. 4).

One can also use low-level event logs where one event corresponds to an atomic
operation (method invocation, data read/write, message exchange). Low-level event
logs are usually considered when discovering models and specifications of particular
software artifacts (the object-oriented source code of a module, the GUI, etc.). Vari-
ous techniques are available to discover formal behavioral specifications such as au-
tomata [32, 33], scenario-based specifications [34], or object-usage models [35] from
low-level event logs; see [36, 37] for overviews. Like artifacts, object-usage models
describe how an object is being used in a context. These techniques rely on the assump-
tion of sequential execution (on a single machine) and strict patterns (following code
execution), while our problem features a high degree of concurrency and user-driven
behavior. Concurrent use and user influence is considered in [38] being essentially a
variant of process mining discussed above.

Other works use event data generated by users in the application interface to dis-
cover models of how a user operates an application. These events can be used to analyze
styles of process modeling [39] or problem solving strategies in program development
environments [40]; these works cannot analyze events beyond the user interface which
is the scope of this paper. In [41] it is shown how to generate application interface test
models by generating user interface on a web interface; this work synthesises the user
behavior whereas we analyze actual user behavior.
Interactions and deviations. The notion of artifacts [8, 9] where a (complex) process
emerges from the interplay of multiple related objects has proven to be a useful con-
ceptual lens to describe behavioral data of ERP systems. The feasibility of the artifact
idea in process mining was demonstrated in [42, 43] by checking the conformance of
a given artifact-centric model to event data with multiple case identifiers. In [18, 44],
the XTract approach was introduced which allows for fully automatic discovery of an
artifact-centric model (multiple artifacts and their life-cycles) from a given relational
data source. It is also possible to discover artifact-centric process models from event
streams where events contain enough attributes to discover entities and relations [20];
this work also shows how to produce life-cycle models in GSM notation [11], a declar-
ative language for describing artifact-centric processes. Both approaches are limited to
identifying individual artifacts, extracting logs, and discovering life-cycles, but cannot
identify interactions between artifacts and may suffer from convergence and divergence.
In this paper, we extend this approach to avoid the problems and also discover interac-
tions between artifacts.

With respect to the second problem of discovering interactions between artifacts,
much less literature has been found. Petermann et al. [45] proposed to represent rela-

tional data as graphs in which nodes are objects or instances and edges are relations,
which is comparable to (2.1) in Figure 4. However, the scope of their approach are
only limited to instances and direct relations between objects, while neglecting the dy-
namic life-cycles of instances and the interrelations between them. Conforti et al. [46]
proposed another way to address data divergence and convergence by contextualizing
one-to-many relations as subprocesses of a BPMN model instead of interactions be-
tween artifacts; this approach unable to handle many-to-many relations as encountered
in this paper.

Also object-usage models and scenario-based specifications have been used to study
object interactions. In [47] it is shown how to discover from source code how an (object-
oriented) object is being used in a caller context; such models can also be discovered
from low-level execution traces [35]. Also scenario-based specifications discovered
from low-level event logs [34] describe interactions between multiple objects. However,
all these works either focus on a single object or do not distinguish multiple instances of
several interacting objects in many-to-many relations, i.e., two orders being processed
in three deliveries, which is a crucial property of our problem. Using event logs from
two different versions of an object, it is possible to reveal detect changes in object us-
age [48]. In this paper, we want to detect deviations of usage of a single version of an
object to identify outlier behavior.

To summarize, our approach addresses a more general problem than all preceding
approaches: (1) discover multiple artifacts (comprising multiple entities) that are in
many-to-many relations to each other such that data divergence and convergence do
not arise, and (2) discover interactions between artifacts and identify outliers in these
interactions. Sections 4 and 5 address the first and second problem, respectively, and
explain our approach more in detail. The methodology of using our approach to conduct
artifact-centric process mining analyses is discussed in Section 6.

4 Artifact-Centric Log Extraction and Life-cycle Discovery

The first step in our approach is to identify artifact types from a given relational data
source. The artifact types typically describe high-level objects with a real-life interpre-
tation. However, the relational schema used in the data source may differ significantly
from the conceptual model it represents, usually due to performance optimizations. We
first discuss this problem and then our approach to overcome it.

4.1 Relational Schemas vs. High-Level Models

One can describe the difference between conceptual high-level models and relational
schemata in terms of four basic operations. (1) Horizontal partitioning specializes a
general entity (or artifact) into multiple different tables depending on their kind. For
example, “Documents” are distinguished into “Sales Documents” and “Delivery Doc-
uments” with different tables, see Fig. 1. (2) Vertical partitioning distributes properties
of one entity into multiple different tables. For example, the “Changes” to a “Delivery
Document” are not stored in the “Delivery Documents” table, but in a separate “Doc-
ument Changes” table. (3) Horizontal Anti-Partitioning generalizes data from multiple

entities into one table. For example, changes of different document types are all stored
in the same “Document Changes” table rather than in separate tables. (4) Vertical Anti-
Partitioning aggregates attributes of multiple entities into the same table. For example,
“Sales Documents” aggregates attributes for “Sales Order” and “Return Order” (even
though “Reference id” is only required by “Return Order”). The examples also show
that one table may be the result of multiple such operations.

Artifact identification has to undo these operations. The problem is similar to re-
covering a classical entity-relationship (ER) model from a relational data source; see
Sect. 3. The artifact discovery problem solved here differs from this problem as one ar-
tifact type may comprise multiple entities as long as they are considered to be following
a joint life-cycle, see for example Sect. 2.3 combining entities “sales orders”, “return
orders”, and “return deliveries” into one artifact. The XTract approach [18] uses schema
summarization techniques [19] to cluster tables in the data source based on their “infor-
mational distance”; This approach can undo some cases of horizontal partitioning and
some cases of vertical partitioning by grouping multiple related tables into the same
cluster.

In the following, we present a more general, semi-automatic approach for artifact
identification. We want to identify artifact types from a relational data source and then
extract an event log describing the artifact’s life-cycle. Therefore, each artifact type
shall comprise all attributes, including time stamps, related to a particular high-level
business object.

Due to vertical partitioning, an artifact’s attributes may be distributed over many
tables. We undo vertical partitioning by grouping all tables related to an artifact in
order to collect all its attributes. This first step, described in Sect. 4.3, yields an artifact
schema that potentially contains information of multiple different artifacts that were
all stored in the same tables due to horizontal anti-partitioning. The artifacts in one
schema are all of a similar form. However, because of vertical anti-partitioning, there
may be tables containing information of artifacts of very dissimilar form, such as table
“Changes” in Fig. 1. To overcome this side effect of vertical anti-partitioning, the same
table may be part of different artifact schemas; this refinement of artifact schemas may
require user interaction.

Next, we refine an artifact schema into individual artifact types by letting the user
specify a discriminating predicate for each artifact thus undoing horizontal anti-partitioning.
This step also reverts vertical anti-partitioning by selecting from the artifact schema
only those attributes that are relevant for an artifact type as shown in Sect. 4.4. Each
resulting artifact type allows to extract an event log describing the life-cycle of this ar-
tifact; this step is discussed in Sect. 4.5. Reversing horizontal partitioning (i.e., dealing
with specialization) is discussed in Sect. 4.6. Finally, we discuss how existing process
discovery techniques can be used to discover a suitable life-cycle model for each arti-
fact.

4.2 Preliminaries - Relational Data

Before going into details, we briefly recall some standard relational concepts [49].

Definition 1 (Tables, Columns). T = {T1, · · · ,Tn} is a set of tables of a data source,
where each table Ti = 〈C,Cp〉 is a tuple of its columns C and its primary keys Cp.

In our OTC example, we have four tables, each of which has one column as primary
key, i.e. T = {SD, DD , BD, Changes} and e.g. table SD = 〈{SD id, Date Created,
Reference id, Document Type, Value, Last change }, {SD id}〉.

Definition 2 (References). F = 〈Tp,Cp,Tc,Cc,Fcondition〉 is a reference if and only if

– Tp is the parent table ,
– Cp is an ordered subset of columns denoting the primary key of the parent table,
– Tc is the child table,
– Cc is an ordered subset of columns denoting the foreign key, and
– Fcondition is the extra condition for the reference (which can be appended in the

FROM part or the WHERE part of an SQL query).

The condition Fcondition reflects the as-is situation in various ERP systems such as
SAP where Cc only is a proper reference to an entry in Tp if that entry has a particular
value in particular column of Tp. For example, the foreign key F4 can be defined by three
references, and one of these references is 〈 [SD], {SD id}, [Changes], {Reference Id},
“ [Changes].[Table name] = “SD ” ”〉. The condition Fcondition could be empty indicating
Fcondition is true.

Definition 3 (Data schemas). S = 〈T,F,D, column domain〉 is a data schema with:

– T is a set of the tables with the primary keys of each table filled in;
– F is a set of references between the tables;
– D is a set of domains; and
– column domain that assigns each column a domain.

The data schema of a relational data source describes the relational structure of the
data source. Since our approach requires a data schema as input, the data schema can
be either discovered using the original XTract approach or imported.

4.3 Artifact Schema Identification

Our first step is to identify artifact schemas, where one artifact schema contains all
attributes related to all artifacts of a similar form. Formally, an artifact schema is a
collection of related tables; a distinguished main table holds the identifier.

Definition 4 (Artifact-schemas). SA = 〈TA,FA,DA, column domain,Tm〉 is an artifact-
schema if and only if SA a subset of the schema S = 〈T,F,D, column domain〉, i.e.,

– TA ⊆ T is a subset of tables;
– FA ⊆ F is a subset of reference;
– DA ⊆ D is a subset of domains;
– column domain is the assignment function of the schema; and
– Tm ∈ TA is the main table in which the trace identifiers can be found.

While the existence of a unique main table Tm cannot be formally guaranteed for all
relational schemas, previous studies and our own results suggest that such a table can
always be found in practice [4, 6, 18, 22, 50].

The starting point for finding artifact schemas in the relational data source is its
schema S. We can assume that this schema to be known either from existing documen-
tation or through schema summarization techniques used by [18].

From this graph, we can remove the references which are not one-to-one, thus result-
ing in a graph only connected by one-to-one references. Each of the resulting connected
sub-graphs can be considered as valid artifact schemas as it only contains tables which
are linked by one-to-one references. The main table Tm can be selected as a table which
has no parent in the set TA of the selected tables. The set DA of domains is the union set
of all domains of columns of the tables in TA. We can obtain an artifact schema SA and
add it to the set S to be returned.

Algorithm ComputeArtifactSchemas(S)
1. Let a graph G = (TG,FG)← (S.T,S.F)
2. for F ∈ FG

3. do if (F is not one-to-one)
4. then remove F from FG

5. for each connected sub graph g = (Tg,Fg) ⊆ G
6. do TA ← Tg, FA ← Fg,
7. Select a table Tm ∈ TA which has no parent table in TA

8. DA ← the union set of domains of columns of the tables in TA

9. SA ← 〈TA,FA,DA,S.column domain,Tm〉 (∗ create a new artifact
schema ∗)

10. Add artifact schema SA to S
11. return S

The algorithm ComputeArtifactSchemas presented is a simple brute-force way of
partitioning the tables into artifact schemas containing only one-to-one relations. This
is to prevent a potential de-normalization during log extraction which could result in
duplication of records and extracted events (see Sect. 2.2). Note that the one-to-many
relations are not dropped or removed. Rather, they describe relations between different
artifact schemas and will be used in Sect. 5 when discovering interactions between
artifacts; see also the overview of our approach in Figure 4.

The initial partitioning returned by ComputeArtifactSchemas is a “safe” partition-
ing that prevents data divergence and convergence problems occurring within artifacts,
as discussed in Section 2.2. However, these safe artifact schemas might not yet match
the intended conceptual schemas: one might obtain trivial artifact schemas containing
only one table, or incomplete artifact schemas missing information contained in a ta-
ble related to another artifact. We have shown in Sect. 2.3 that different artifacts can
be conceptualized from the same relational data source depending on how tables are
grouped. Thus, as a second step, we allow users to add or remove tables from a schema

in order to obtain the intended artifacts. This way, also one-to-many relations may be
included in an artifact schema at the potential cost of data convergence and divergence.
Moreover, as one table may contain information of artifacts stored in different schemas
(vertical anti-partitioning), we explicitly allow artifact schemas to overlap in tables.

The manual refinement of artifact schemas requires domain knowledge, which is
typically available for standard ERP systems by Oracle or SAP. In case no domain
knowledge is available, earlier works [18, 44] could be used to automatically identify
artifact schemas based on their informational contents. However, the resulting artifact
schemas may include one-to-many relations and thus induce data convergence and di-
vergence. Again, a subsequent manual refinement is required to obtain the desired ar-
tifact schemas. We illustrate the difference between the original XTract approach [44]
and our artifact schema identification using the OTC example. The XTract approach
returns the three artifact schemas shown in the left table of Figure 11 when we set the
number of artifacts to be 3. Our approach first return three artifact schemas SD, BD,
and DD as shown by the black tables in the right table of Figure 11. Since only one in-
voice has a change, the document changes table is assigned to the BD artifact schema.
The SD artifact schema returned only contains the SD table, similar for the DD artifact
schema. Now if users desire to include changes for the SD artifact, they can add the
changes table to the SD artifact schema.

PAGE 33

XTract: Artifact Schemas (k = 3)

Name Main table Tables

BD BD BD

Changes Changes Changes

Changes ? SD, DD

Our Approach: Artifact schemas

Name Main table Tables

BD BD BD, Changes

SD SD SD (, Changes)

DD DD DD

Fig. 11: Comparing the artifact schemas obtained using the XTract approach and our
approach with respect to tables T and the main table Tm

4.4 Artifact Identification

The tables of an artifact schema SA may contain information about multiple similar
artifact types, due to horizontal anti-partitioning. Next, we refine an artifact schema
into its artifact types by specifying discriminating predicates. Also, due to vertical anti-
partitioning, the artifact schema may contain attributes that are not relevant for each of
its artifact type. Thus, we project the artifact schema onto only those attributes (identi-
fiers, time stamps, etc.) that belong the artifact type.

Definitions Formally, we center the definition of an artifact type around the events de-
scribing its life-cycle. Intuitively, each time-stamped value in the data source describes
an event, the attribute (or column) containing that value is classified as an event type.
That is, an artifact type is a collection of columns containing time-stamp values, and an
identifier. All other columns in the tables of an artifact are considered to be attributes
of the various event types where they are accessible for subsequent process mining
analysis. The formal definitions read as follows.

Definition 5 (Event types). Ei = 〈Ename,CEid,Ctime,CEattrs,Econdition〉 ∈ E is an event
type if and only if:

– Ename is the name of the event type;
– CEid is a set of columns defining the event identifier;
– Ctime is the column indicating the ordering (or the timestamps) of events of this

event type;
– CEattrs is a set of columns denoting the attributes of the event type; and
– Econdition is a condition (which can be appended in the FROM part or the WHERE

part of an SQL query) to distinguish various event types stored in the same column
Ctime of the data source.

Definition 6 (Artifact types). A = 〈Aname,CAid,E,Cattrs, I,SA,Acondition〉 is an artifact
if and only if:

– Aname is and artifact name;
– CAid is a set of columns denoting the case identifier of the artifact;
– E is a set of event types;
– Cattrs is a set of columns denoting the case attributes,
– I is a set of interactions between this artifact A and other artifacts (which remains

as an empty set in this section);
– SA is the corresponding artifact schema; and
– Acondition is the an artifact condition which is an extra condition (which can be

appended in the FROM part or the WHERE part of an SQL query) that is used to
distinguish various artifacts having the same main table Tm (or having the same
artifact schema).

We show a concrete example of the artifact definition. Consider the artifact schema
SA = 〈TA,FA,DA, column domain,Tm〉, where the tables TA = {SD} and the refer-
ences FA = {〈SD, {SD id}, SD, {Reference id}〉}, we would like to identify two arti-
facts, Sales Order and Return Order. Both artifacts may have the same artifact schema,
but they could have different events, attributes, and interactions. For example, the ar-
tifact Sales Order ASalesOrder = 〈Aname,CAid,E,Cattrs, I,SA,Acondition〉 could have the
structure shown in Table 1, in which each component of the artifact is given a value.

Discovery Algorithms To be able to semi-automatically discover artifacts from an arti-
fact schema and a column (or columns) indicating the artifact, we define two functions.
The first function constructs a single artifact, whereas the second function constructs
multiple artifacts by calling the first function multiple times.

The first createArtifact(SA, Aname, Acondition) function takes an artifact schema SA,
an artifact name Aname, and an artifact condition Acondition as input and returns one arti-
fact. For this function, we assume that condition Acondition is given or provided by a user
with insights into the data model of the system. The case identifier CAid of the artifact
is defined by the primary key of the main table of the inpu artifact schema SA, each
time-stamped column Ctime in a table T ∈ TA of the artifact schema defines an event
type E ∈ E, every other non-time stamped column in T defines an attribute of event
type E. Every non-time stamped column that cannot be related to one specific event

Table 1: An example of the Sales Order artifact
Artifact’s component Value
Aname Sales Order
CAid { SD id }

E1 ∈ E

〈Ename = date created,
CEid = {SD id},
Ctime = [date created],
CEattrs = {},
Econdition = ∅〉

E2 ∈ E

〈Ename = last change,
CEid = {SD id},
Ctime = [latest change],
CEattrs = {},
Econdition = ∅〉

Cattrs { [Document type], [Value]}
I ∅
Acondition Tm.[Document type] = ‘Sales Order’

type defines a case attribute. For instance, given (1) the aforementioned artifact schema
SA whose TA = {SD} and Tm = SD, (2) artifact name Aname as Sales Order and (3) ar-
tifact condition Acondition as [Document type] = “Sales Order”, the primary key SD id of
table SD is then set as the case identifier of artifact Sales Order. The two time-stamped
columns Date created and Last change are considered as the Ctime of two event types
with names as date created and last change, respectively. The event type identifiers of
these two event types are the same, the primary key SD id of the table SD because both
time-stamped columns are in the same table SD. The three columns left, Reference id,
Document type and Value, can not be assigned to a specific event type and thus de-
fine three case attributes. The discovered artifact is shown in Table 1; see [18] [44] for
details.

Besides letting the user specify condition Acondition manually, there is also a generic
condition that allows to separate artifact types stored in the same main table. In this case,
the main table Tm typically has a particular column Ctype where the value of Ctype indi-
cates the artifact type to which an entry of Tm belongs. Let v1, ..., vn be values found in
Ctype. Then calling createArtifact() with condition Ctype = vi for each i = [1, n], allows
to extract all artifact types defined by Ctype. This can be generalized to multiple columns
and automated in our second function createArtifactsByColumnValues(SA, Ce) having
as arguments the artifact schema and a set of columns Ce that distinguish the different
artifact types. For example, given (1) the aforementioned artifact schema SA whose
TA = {SD} and Tm = SD and (2) the column Document type, we find two distinct
values in Document type, “Sales Order” and “Return Order”, which lead to the auto-
matic discovery of two artifacts, ASalesOrder (shown in Table 1) and AReturnOrder (shown
in Figure 12 on the right-hand side).

It is also possible to identify multiple event types from the same timestamped col-
umn by using a condition similar to Acondition used in createArtifact(SA, Aname, Acondition).
Assume an artifact schema SA whose TA = {SD, Changes}, besides the two event
types Date created and Last change we identified earlier, there is a third time-stamped

Name

Artifact Id

Condition

name "Created"

Event id {[SD id]}

Timestamp {[date created]}

Condition

name "last change"

Event id {[SD id]}

Timestamp {[last change]}

Condition

name "Price updated"

Event id {[Change id]}

Timestamp {[Date changed]}

Condition

Changes.[Change type] =

'Price updated'

name "Delivery block released"

Event id {[Change id]}

Timestamp {[Date changed]}

Condition

Changes.[Change type] =

'Delivery block released'

name "Billing block released"

Event id {[Change id]}

Timestamp {[Date changed]}

Condition

Changes.[Change type] =

'Billing block released'

Artifact Sales Order

Sales Order

{[SD id]}

DateCreated

Event type BillingBlockReleased

SD.[Document type] = 'Sales Order'

LastChange

Event type

Event type

Event type PriceUpdated

Event type DeliveryBlockReleased

Name

Artifact Id

Condition

name "Created"

Event id {[SD id]}

Timestamp {[date created]}

Condition

Artifact Return Order

Return Order

{[SD id]}

SD.[Document type] = 'Return Order'

Event type DateCreated

Name Main table Tables

SD SD SD, Changes

Given Artifact schema SD
Our Approach

Th
e

 o
rigin

al X
Tract

one schema one artifact
one time column one event type

Name

Artifact Id

name "Created"

Event id {[SD id]}

Timestamp {[date created]}

name "last change"

Event id {[SD id]}

Timestamp {[last change]}

name "Changed"

Event id {[Change id]}

Timestamp {[Date changed]}

Event type LastChange

Event type ChangesChanged

Artifact SD

SalesDocuments

{[SD id]}

Event type DateCreated

one schema multiple artifact
o

n
e

 t
im

e
 c

o
lu

m
n

m
u

lt
ip

le
 e

ve
n

t
ty

p
e

s

Fig. 12: Comparing the artifacts obtained using the XTract approach and our ap-
proach

column Date changed, which can either be considered as one event type, or we can use
the column Change type to indicate different event type conditions resulting in three
different event types (similar to Acondition). An example of the artifact Sales Order we
then discovered is shown in the middle of Figure 12; see [51] for the technical details.
Furthermore, the approach presented allows users to add, delete and modify each event
type, event type attributes and case attributes.

Figure 12 demonstrates the difference in artifacts returned by the XTract approach
and our approach. Given the artifact schema SD containing the table SD as the main
table and table Changes, the XTract approach returns one artifact SD shown on the left
hand side in Figure 12. In contrast, our approach allows the user to indicate the column
document type as a condition column constituting Ce in the function createArtifactsBy-

ColumnValues(SA, Ce). Two artifacts Sales Order and Return Order are then identified,
as shown on the right hand side in Figure 12.

4.5 Artifact Extraction

To extract an event log for an artifact, the identified artifact is used to create a log
mapping which maps the components of an artifact type to the components of a log.
For example, the artifact identifier CAid is mapped to the trace identifier attribute; the
event type identifier CEid is mapped to the event identifier attribute, each timestamp
column Ctime is mapped to the timestamp attribute. Note that the set of the interactions
of each artifact type is still empty and no information about interactions is mapped nor
extracted for now.

Next, the log mapping is used to create SQL queries which select the instances
according to the log mapping and join the events and attributes to the instances. The
result of the queries is stored in a cache database, which is then used to write event log
files in XES format by calling the functions of the OpenXES library3.

Figure 13 shows an example of an event log extracted for the artifact Sales Order
in Figure 12. Only two entries in table SD satisfy the artifact condition SD.[Document
type] = “Sales Order”, S1 and S2, which respectively result in two traces with S1 and
S2 as trace identifiers. According to the event type definitions, we are able to extract
five events for S1 and two events for S2. The corresponding values for the ID, name,
timestamp and attributes of an event are also extracted. For example, event e2 of case
S1 is extracted according to event type Price updated and thus has Price updated as
name, the value 1 (which is the value of its primary key of column Change id in table
Documents Changes) as event ID, 17-5-2020 as timestamp (which is the value of col-
umn Date changed), and some event attributes extracted from table Documents Changes
(as example). Other events are extracted using the same method, see Figure 13.

Our approach basically reused the orginal XTract approach [44] [18] and only ex-
tended it by appending the conditions in the WHERE-part of the queries. For technical
details, we refer to [51] [44].

Log Name Sales Order

Trace

ID name timestamp event attrs

Event e1 S1 Date created 16-5-2020 -

Event e2 1 Price updated 17-5-2020 Old value = "100", New value = "80"

Event e3 2 Delivery block released 19-5-2020 Old value = "x", New value = "-"

Event e4 3 Billing block released 19-5-2020 Old value = "x", New value = "-"

Event e5 S1 Last change 10-6-2020 -

Trace

ID name timestamp event attrs

Event e1 S1 Date created 17-5-2020 -

Event e2 S1 Last change 31-5-2020 -

ID = S1, Document type = "Sales Order", value = 100

ID = S2, Document type = "Sales Order", value = 200

Fig. 13: An example of event log extracted for artifact Sales Order

3 http://www.xes-standard.org/openxes/start

http://www.xes-standard.org/openxes/start

4.6 Handling Generalization

The previous sections described how to identify and extract artifact types and their
life-cycle information from a relational data source. The presented steps allowed to
revert vertical partitioning, and horizontal and vertical anti-partitioning of the given
data. Here, we discuss how to handle horizontal partitioning in the data source, that is,
when information about a conceptual general artifact is not stored as such, but has been
distributed over many different tables. For example in Fig. 1, one could be interested in
extracting a general “Documents” artifact rather than one artifact for different document
types.

Generalizing different artifact types into one general artifact is similar to generaliz-
ing entities and highly depends on the given relational schema [52].

1. The specialization is materialized in the relational schema by a discriminating at-
tribute. In this case all artifact types are found in the same tables, and hence will
be contained the same artifact schema. When defining the artifact type, one simply
specifies are more general discriminating condition Acondition in Def. 6. The result-
ing general artifact type then contains more or even all event types and attributes in
the artifact schema.

2. The specialization is materialized as an “IS-A” relationship with a “general table”
and foreign keys from its specializations. In this case, the general table and all
specializations of interest become part of the artifact schema, and the general table
is chosen as main table. Artifact type definition proceeds as described above.

3. The specialization is materialized as separate tables without an “IS-A” relation-
ship. In this case no generalizing main table for the different specializations can be
defined. Two solutions are possible. (1) One can first extract the life-cycle event
log for each specialized artifact, and then merge the resulting event logs into one
generalized event log. Prefixing values of identifier attributes prevents collisions
of different specializations. (2) For the purpose of the analysis, one could trans-
form a copy of the original relational source, for example by introducing an “IS-A”
relationship with appropriate foreign keys.

4.7 Artifact Life-cycle Discovery

For each artifact Ai which we identified on the database level, we have shown how to ex-
tract an event log Li. To discover the life cycle Mi of artifact Ai from the corresponding
log Li, we can reuse existing process discovery algorithms. For discovering a life-cycle
model from a log Li, generally the same considerations apply as for discovering a pro-
cess model from Li. There are various discovery algorithms available and the user has
to pick one that satisfies her desired criteria.

For Life-cycle discovery, we provide no new technique but re-use existing process
discovery techniques that create from an event log of a process, a process model. The
advantages and disadvantages of these techniques have been discussed extensively on a
conceptual and on empirical level [31]. A user can choose a suitable algorithm based on
these and the desired characteristics and quality criteria with respect to the target model
(fitness, precision, simplicity, generalization). Often, different mining algorithms can

be used depending on the purpose, e.g., ILP miner for optimizing fitness and precision,
ETM to balance quality criteria, heuristics miner to show a simple model without com-
plex routing logic (though without operational semantics), etc. One characteristic that
is specific to artifacts is that, unlike classical workflow processes, concurrency in the
discovered may be of secondary concern (i.e., a business object may never be accessed
concurrently by two users/processes at the same time, thus a transition system model
[TS miner] could provide a the right representational bias that does not introduce ar-
tificial concurrency). The subsequent interaction discovery requires that each event of
an artifact is translated into (exactly one) action of the life-cycle model as otherwise
interactions cannot be discovered properly. This assumption excludes algorithms that
may discard certain events during discovery or that may duplicate tasks.

For the remainder, we assume that Miner(L) denotes some life-cycle miner that
returns a process model M of the life-cycle of Ai. For the artifact type Sales Order
we shown in Figure 12 and the event log that we extracted for this artifact shown in
Figure 13, we discovered a life-cycle of this artifact shown in Figure 14 by applying the
flexible heuristic miner [25].

Fig. 14: The life-cycle discovered for the artifact Sales Order

5 Interaction Discovery

Having identified artifact life-cycles, we can now approach the problem of discovering
interactions between artifacts. In Section 5.1, we begin with an analysis of the possible
interactions between artifacts. In Section 5.2, we illustrate how to identify interactions
between artifact types and between instances. Enriching the logs extracted for artifacts
with these interactions is discussed in Section 5.3. These enriched logs can then be
used to identify interactions between event which is discussed in Section 5.4. Finally,
Section 5.5 presents the computation of artifact-centric models.

5.1 Interaction Types and Definitions

Interactions between artifacts can be studied from different levels of abstractions. Fig-
ure 15 illustrates four levels of interactions: interactions (a) between artifact instances,
(b) between artifact types, (c) between events of artifacts, or (d) between event types of
artifacts.

The (a) artifact instance level interactions denotes interactions between two artifact
instances such as the sales order S1 and the return order S3. The (b) artifact type level
interactions refer to interactions between two artifact types such as the Sales Order
and the Return Order. The existence of interactions between two instances indicates, to
some extent, the existence of an interaction between the two artifact types. The (c) event
level interactions are interactions between two events such as the Latest Change event
with id S1 and timestamp ‘10-6-2020’ of the sales order S1 and the Date Created event
with id S3 and timestamp ‘10-6-2020’ of the return order S3 that is related to sales order
S1. The (d) event type level interactions denote interactions between two event types
such as the Latest Change event type of the sales order artifact and the Date Created
event type of the return order artifact. For the sake of brevity, we also refer to artifact
instance level interactions as instance level interactions and refer to artifact type level
interactions as type level interactions.

PAGE 27

Artifacts Event types

Artifact instances Events

Specifies

Performed

Instantiation Instantiation

Event type level interactions

Events level interactions Artifact instance level interactions

Artifact type level interactions

Definition

Recording

Indicate

DB level Log level

Artifact
LogMapping

Event Log

CacheDB

Indicate

Fig. 15: The four levels of interactions

Direct Type- and Instance Level Interaction Before formally defining interactions,
we explain briefly the reasoning behind the existence of interactions. Starting from two
given artifacts, each of which has a main table containing its instances. If there exists a
reference between the two main tables and there is an instance in one of the two tables

referring to an instance in the other table, then there may be an interaction between the
two artifacts. This idea leads to our definition of the direct interactions.

Definition 7 (Direct artifact type level interactions, Parent artifacts, Child arti-
facts). Let A be a set of artifacts and F a set of references. (AS,F,AT) ∈ A×F×A is a
direct, artifact type level interaction between the two artifacts AS and AT , if and only if,
(1) F = 〈TS

m,CS
Aid,T

T
m,CT

c , Scondition〉 is a reference from some attributes CT
c of the main

table of AT to the artifact identifier CS
Aid of AS, and (2) there has to be an entry s in TS

m
referring to an entry t in TT

m that s satisfies the condition AS.Acondition, and t satisfy the
condition AT .Acondition.

We denote the artifact AS as the parent artifact and the artifact AT as the child
artifact.

For example, (ASalesOrder,F2,AReturnOrder) is a direct, artifact type level interaction.
The direct instance level interactions are instantiated from the interactions on the type
level by joining the main tables based on direct type level interactions. Below, we
show an SQL query that select the direct instance level interactions of the direct type
level interaction (ASalesOrder,F2,AReturnOrder). The resulting instance level interaction is
(S1, S3). Note that the query can be generated automatically using the artifacts and
references. For technical details, we refer to [51].

SELECT DISTINCT
SalesOrder.[SD ID] AS [SO id],
ReturnOrder.[SD ID] AS [RO id]

FROM SD AS SalesOrder
INNER JOIN SD AS ReturnOrder
ON SalesOrder.[SD ID] = ReturnOrder.[REFERENCE ID]
AND SalesOrder.[DocumentType] = ‘Sales Order’
AND ReturnOrder.[DocumentType] = ‘Return Order’

Lemma 1 (Reference property). Given a direct, type level interaction (AS,F,AT), an
instance in the parent artifact AS can be linked to zero or multiple instances of the child
artifact AT , whereas an instance in the child artifact AT can only be linked to zero or
one instance of the parent artifact AS.

Proof. According to the definition of a direct type level interaction, the reference F is
a direct foreign key between the two main tables. Therefore, the property of a foreign
key (or the structure of a relational database) indicates that an entry in the parent table
(in this case the main table AS.Tm of the parent artifact) is linked to zero or multiple
entries in the child table (in this case the main table AT .Tm of child artifact), whereas
an entry in the child table is only linked to zero or one entry in the parent table, which
automatically implies the Reference property since each entry in the main table refers
to an artifact instance.

To represent a set of artifacts and the direct type level interactions between them,
we use a graph of which the vertices are the artifacts and the edges are the interactions
between the artifacts. We called the graph an interaction graph.

PAGE 22

Sales Documents

Table

Deliveries Documents

Table

Sales

Documents

table

Deliveries

Documents

table

Billing

Documents

table

Billing Documents

Table

Sales Order Delivery

Return order Return delivery

Invoice

Fig. 16: The artifact type level interactions of the running example.

Definition 8 (Interaction graphs). Given a set A of artifacts and a set F of references,
G = (A,D) with D ⊆ A × F × A is an interaction graph, if and only if, for each
d = (As,F,At) ∈ D, d is a direct, artifact type level interaction between artifacts As

and At.
The set of outgoing edges of artifact AS ∈ A is denoted by outEdges(AS) = {(AS,

Fi, x) ∈ D | x ∈ A}. Similarly, the incoming edges of artifact AS is defined as
inEdges(AS) = {(x,Fi,AS) ∈ D | x ∈ A}.

For example, Figure 16 shows the interaction graph of the OTC example including
the direct interactions (denoted by the arcs) between the artifacts (denoted by the el-
liptic nodes). Note that there could be multiple edges (thus multiple direct type level
interactions) between two artifacts because there could be different references linking
the artifacts.

Indirect Type- and Instance Level Interaction Intuitively, the direct interactions be-
tween artifacts described above are sufficient to study how artifacts interact with each
other. However, in practice two artifacts A and B of interest may not interact directly,
but only indirectly via another artifact C. If artifact C is not of interest for the analy-
sis, for instance because it is at a lower level of detail, we would like to omit C from
the artifact extraction yet still be able to analyze the interaction between A and B. For
instance, if the return orders shown in Figure 16 can be ignored, we would still like to
be able to identify the interactions between the Sales Order and the Return Delivery.
More importantly, this allows us to consider a many-to-many relation, which normally
is composed by a one-to-many and a many-to-one relation, as a single interaction by
omitting the intermediate artifact (or table). A real-life example encountered is that ERP
systems in general have a document header and document lines structure where docu-
ments are connected through document lines instead of directly connected through the
headers. To allow a user to study interactions between the artifacts of her choice, we
define artifact type level interactions, direct or indirect, as follows.

Definition 9 (Artifact type level interactions). Let A be a set of artifacts and F be a
set of references. An artifact type level interaction IS,T = 〈d1, · · · , dn〉 ∈ (A× F×A)∗
between artifacts AS and AT with n ≥ 1 is a sequence of direct interactions di =
(APi ,Fi,ACi) ∈ A×F×A and 1 ≤ i ≤ n, which satisfies one of the following properties
(also shown in Figure 17):

(1) the parent artifact AP1
of the first direct interaction d1 is the artifact AS, and the

child artifact APn of the last direct interaction dn is the artifact AT , and for 1 ≤ i <
n, ACi = APi+1 ; or

(2) the child artifact AC1
of first direct interaction d1 is the artifact AS, and the parent

artifact APn of the last direct interaction dn is the artifact AT , and for 1 ≤ i < n,
APi = ACi+1 ; or

(3) there is a number k and 1 ≤ k ≤ n, for 1 ≤ i < k, ACi = APi+1
, and ACk = ACk+1

,
and for k < i < n, APi = ACi+1

, and the parent artifact AP1
of first direct interaction

d1 is the artifact AS, and the parent artifact APn of the last direct interaction dn is
the artifact AT .

Additionally, in all cases the number of instance level interaction is greater than zero.

PAGE 31

S T
d1 dn

S T
d1 dn AP1 ACn Ac1

Apn

S
d1 dk AP1

ACk = AC(k+1)

T
dk+1 dn Apn

(1) (2)

(3)

Fig. 17: Type level interactions

Definition 10 (Strongly connected interactions). The artifact type level interactions
IS,T = 〈d1, · · · , dn〉 between artifacts AS and AT that satisfy the first or the second prop-
erties in Definition 9, we called them the strongly connected interactions. The length of
strong joins of this interaction is n.

Figure 18(a) shows a strongly connected interaction consisting of two direct interac-
tions (ASalesOrder,Fi,AReturnOrder) and (AReturnOrder,Fj,AReturnDelivery) linked by AReturnOrder.
Since both interactions share the return order artifact, it is possible to join the three main
tables based on the two direct interactions. As the references are joined in the same di-
rection, we have the guarantee that an instance of the artifact ATi is only linked to zero
or one instance of the artifact ASi , based on the reference property. This property also
indicates that an instance of the artifact ASi is linked to all related instances of the arti-
fact ATj , and these instances of ATj are not linked to any other instances of the artifact
ASi .

Definition 11 (Weakly connected interactions). The artifact type level interactions
IS,T = 〈d1, · · · , dn〉 between artifacts AS and AT that satisfy the third property in
Definition 9, we called them the weakly connected interactions. The length of strong
joins of this interaction is k, and the length of weak joins is m = n − k. When the
length m of weak joins is greater than zero, the interaction instances could be an over-
approximation. We define functions lengthSJ : I → N and lengthWJ : I → N to
retrieve the length of strong joins (k) and the length of weak joins (m) of an interaction,
respectively.

Figure 18(b) shows a weakly connected interaction comprised two direct interac-
tions (ASalesOrder,Fi,ADelivery) and (AInvoice,Fj,ADelivery) linked to the same child artifact

Sales Order

Return order Return delivery

Sales Order Delivery Invoice

Sales Order Delivery

Return order

S1

S3 D4

S1

S2

D1

D2

B1

B2

D3

S1

S3

D1

D2

(a)

(b)

(c)

Fig. 18: The three possible cases of indirect interactions constituted of two direct
interactions

ADelivery. The instances of the artifact Sales Order are explicitly linked to the instances
of the artifact Invoice via the instances of the artifact Delivery, as shown by the graph
in Figure 18(b) on the right-hand side. For example, S1 linked to B1 via D1, S1 linked
to B2 via D2, and S2 linked to B2 via D3. This explicitness is because an instance of
the artifact Delivery can only be linked to one instance of Sales Order and one instance
of Invoice (e.g. (S1, D1, B1)) based on the reference property. However, also based on
the reference property, there is the possibility that an instance of the artifact Invoice
is linked to multiple sales orders (e.g. B2). As a result, when the invoices B1 and B2
are selected as the indirect instance level interactions for the sales order S1, we have
also included a part of B2 that is not related to S1 but related to S2. Therefore, there is
an over-approximation when a weakly connected interaction is used to derive instance
level interactions.

Invalid Interactions. Compared to weakly connected interactions, sequences that
have two consecutive direct interactions (ASi ,Fi,ATi) and (ASi ,Fj,ATj) with the same
parent artifact ASi and different target artifacts is invalid. Figure 18(c) shows an exam-
ple: the interaction composed of (ASalesOrder,Fi,ADelivery) and (ASalesOrder,Fj,AReturnOrder).
Since an instance of the artifact Sales Order can be linked to multiple instances of the ar-
tifact Delivery and multiple instances of the Return Order, it is impossible to determine
the exact relations between the instances only based on the references. For instance, D1
and D2 refer to S1, but also S3 refers to S1, but there is no explicit relation that indi-
cates whether D1 is then related to S3 or D2 to S3. Therefore, this type of interaction is
considered to be invalid.

Possibility of Identifying Event Level Interactions The definition and the examples
demonstrate that type level interactions and instance level interactions between two ar-
tifacts can be identified on the database level. However, the database is not suitable for
identifying event level interactions as we illustrated on our OTC example. The direct
interaction between the Sales Order and the Return Order does not indicate whether the
Date Created event type of Return Order is (causally) related to the Date Created event
type of Sales Order or to the Latest Change event type of the Sales Order. Moreover,
we aim at identifying a “direction” of interaction such as “event e1 caused event e2”.

This information requires to compare the order of different events in time. For this pur-
pose, the event log structure and process mining techniques are much more suitable than
the tables of a relational database. Therefore, we propose to identify event level interac-
tions after we extracted the artifact event logs (which will be discussed in Section 5.4).
Though in order to allow finding event level interactions in event logs, we first have
to enrich the event logs (extracted in Section 4) with information about artifact level
interactions. The algorithms for enriching logs are presented in Section 5.3.

5.2 Artifact Type Level Interaction Discovery

To compute artifact type level interactions, our method consists of two parts. First, given
a set of artifacts A = {A1, · · · ,An}, we compute an interaction graph G = (A,D). From
the interaction graph G, we then compute a set of type level interactions I, direct and
indirect, for each artifact.

Interaction Graph Construction To solve the first part, we introduce the algorithm
ConstructInteractionGraph(A,F). We first define an auxiliary function Artifacts(T) =
{A ∈ A | A.Tm = T} to retrieve a set of artifacts that shares the same main table T .
Then, using Artifacts(Tp) and Artifacts(Tc), for each reference F ∈ F between Tp and
Tc, we retrieve all artifacts Ap that has the parent table Tp and all artifacts Ac of the
child table Tc, respectively (see Line 3). For each combination of Ap and Ac with the
reference F between them, we select the count using the countSelect query defined in
Section 5.1 to verify whether it is a direct interaction (see Line 4). If the count is greater
than 0, then an edge (Ap,F,Ac) is added to D as an edge in the interaction graph G.

Algorithm ConstructInteractionGraph(A,F)
1. D← ∅
2. for F = 〈Tp,Cp,Tc,Cc, Scondition〉 ∈ F
3. do for Ap ∈ Artifacts(TP), Ac ∈ Artifacts(Tc)
4. do if countSelect(Ap,F,Ac) ≥ 0
5. then D← D ∪ (Ap,F,Ac)
6. return G = (A,D)

Computing Artifact Type Level Interactions To solve the second part, i.e. discov-
ering a set of (direct and indirect) interactions for each artifact given, we present the
algorithm CalculatesInteractions(A,G, r, k,m), with r > 0, k ≥ 1 and 0 ≤ m ≤ k,
which returns the set A of artifacts, and for each artifact AS ∈ A we fill in the set IS of
interactions with the following requirements. For each interaction IS ∈ IS, the length of
the strong joins is at most k, the length of weak joins is at most m and the number of
distinct instance level of interactions is at least r.

The algorithm CalculatesInteractions runs the following. For each artifact AS ∈ A,
it initializes the set I of interactions as empty set. Next, taking AS as the start point, the

algorithm simply explores all paths in the interaction graph G with a depth first strategy
by recursively calling the algorithm calculateJoins. The paths that satisfy the require-
ments w.r.t. k, m, and r are returned as type level interactions for AS (see Appendix for
details).

Algorithm CalculatesInteractions(A,G, r, k,m)
1. for AS ∈ A
2. do I← ∅
3. for (AS,F,At) ∈ outEdges(AS)
4. do Icurrent ← 〈(AS,F,At)〉
5. if countSelect(Icurrent) ≥ r
6. then I← I ∪ Icurrent

7. calculateJoins(AS, At, Icurrent, I, r, k − 1, m)
8. A.I← I
9. return A

After the algorithm CalculatesInteractions(A,G, r, k,m) terminates, we have, for
each artifact A ∈ A, the set A.I of interactions calculated and returned. Users can select
a set of desired type level interactions from the set A.I.

Single-Sided Discovery Note that we made a design decision to restrict the identifi-
cation of symmetric interactions on the parent artifact by using the condition that the
length of strong joins is at least the length of weak joins, in addition to that the number
of strong joins greater than zero (i.e. k ≥ 1). In other words, recalling the three situ-
ations of type level interaction shown in Figure 17, we only obtain interactions of the
parent artifact AS that satisfy (1), or (3) with m ≤ k. The interactions that satisfy (2)
or (3) with m > k will only be extracted as the interactions of artifact AT . Note that
this decision will also effect the event logs we extract. An instance level interaction will
only be extracted for the parent artifact.

There are several advantages to only identify interactions on the one side. First,
limiting the interactions to the parent artifact can prevent duplicated attributes to be
extracted to improve the performance of log extraction. Furthermore, this decision also
limits the number of discovered interactions to decrease the number of manual selec-
tions that are needed by users. Moreover, we retain the parent and child structure and
the reference property which can be reused during the process discovery. We have ob-
served one disadvantage. For example, when a child artifact instance has an interaction
with a parent artifact instance but this parent instance is not extracted in the event log,
then we miss the information that the child instance has an interaction in the event log.
Changing the proposed algorithm to extract interactions on both side is considered as
future research.

5.3 Enriched Log Extraction

Using the method described in Section 5.2, we discovered for each artifact a set of type
level interactions and their instance level interactions. These instance level interactions
are used to enrich logs extracted for artifacts (which is discussed in Section 4.5) and
thus retained for the mining phase. The method runs as follows.

Each artifact type level interaction is used to generate an SQL query that joins the
main tables of artifacts and select interactions between the artifact instances. These in-
stance level interactions are considered as (a list of) attributes of an artifact instance and
extracted as the case attributes for the artifact instance. For example, Figure 19 shows
the artifact type Sales Order filled with two type level interactions I1 and I2 (omitted
the five event types in Figure 11 for the sake of brevity). Using similar automatically
generated SQL queries as we discussed in Section 5.1, we obtain {(S1, S3)} and {(S1,
D1), (S1, D2)} as instance level interactions of sales orders S1 with return orders and
deliveries, respectively. For sales order S2, only interactions with deliveries are found,
{(S2, D3)}; the instance level interactions between S2 and return orders is an empty
set. The instance level interactions (stored in the cache database) can now be extracted
to enrich the event log of artifact Sales Order. Thus, the log shown in Figure 13 is now
enriched with the three case attributes as Figure 20 illustrated with the highlighted parts
(we omitted the events for the sake of brevity). For instance, trace S1 has now two case
attributes additionally: one indicates its interacting traces in the artifact Delivery which
are D1 and D2; another indicates its interacting trace in artifact Return Order which is
S3. For technical detail, we refer to [51].

Artifact name

Artifact Identifier

Condition

Interaction I1

Interaction I2

<A_SalesOrder, F1, A_ReturnOrder>

<A_SalesOrder, F2, A_Delivery>

Artifact Sales Order

Sales Order

{[SD id]}

SD.[Document type] = 'Sales Order'

Fig. 19: An example of artifact Sales Order with type level interactions

Log Name Sales Order

Trace

ID name timestamp event attrs

Event e1 S1 Date created 16-5-2020 -

Event e2 1 Price updated 17-5-2020 Old value = "100", New value = "80"

Event e3 2 Delivery block released 19-5-2020 Old value = "x", New value = "-"

Event e4 3 Billing block released 19-5-2020 Old value = "x", New value = "-"

Event e5 S1 Last change 10-6-2020 -

Trace

ID name timestamp event attrs

Event e1 S1 Date created 17-5-2020 -

Event e2 S1 Last change 31-5-2020 -

Log Name Sales Order

Trace

Events ID name timestamp event attrs

Trace

Events ID name timestamp event attrs

ID = S1, Document type = "Sales Order", value = 100

ID = S2, Document type = "Sales Order", value = 200

ID = S1, Document type = "Sales Order", value = 100

ID = S2, Document type = "Sales Order", value = 200

Interaction_Delivery = {D1, D2}, Interaction_ReturnOrder = {S3}

Interaction_Delivery = {D3}

Fig. 20: An example of event log extracted for artifact Sales Order with instance
level interactions as case attributes

5.4 Event Type Level Interaction Discovery

We have shown how to identify type level interactions and enrich the logs with trace at-
tributes of which instance interacts with which other instances. From a log perspective,

a trace t1 of artifact A1 referring to a trace t2 of artifact A2 means that some of the events
in t1 interact with some of the events in t2. In the following, we present techniques to
identify these interactions between events and event types. First, we retrieve for any
two artifacts A1 and A2 the pairs of interacting traces. Then, we provide two different
kinds of techniques to identify patterns of possible event interactions between the inter-
acting traces of A1 and A2. From these, we then derive event type level interactions. In
particular we distinguish frequent interactions and infrequent interactions (outliers).

Preliminaries - Event logs We use the formal definition of event log in [1]. In general,
an event log comprises a list of traces of which each trace contains all events that
occurred in a case, i.e., an execution of the process.

Definition 12 (Event universe E). Let E be the event universe, i.e. the set of all possible
event identifiers. Events may be characterized by various attributes. Let AN be a set of
attribute names. For any event e ∈ E and name n ∈ AN : #n(e) is the value of attribute
n for event e. If event e does not have an attribute named n, then #n(e) = ⊥ (null
value).

For example, #type(e) is the event type associated to event e describing the activity
that has been executed; #time(e) is the timestamp of event e (also denoted by T (e)).

Definition 13 (Case universe L). Let L be the case universe, i.e. the set of all possible
case identifiers. A case also has attributes. For any case c ∈ L and name n ∈ AN :
#n(c) is the value of attribute n for case c. If case c does not have an attribute named
n, then #n(c) = ⊥.

Definition 14 (Traces). Each case has a special mandatory attribute trace: #trace(c) =
σc ∈ E∗, which is a finite sequence of events σ ∈ E∗ such that each event appears only
once. We assume traces in a log contain at least one event, i.e. #trace(c) 6= 〈〉.

Definition 15 (Logs). An event log is a set of cases L ⊆ L such that each event appears
at most once in the entire log. We use A to denote the set of all event types appearing
in log L, i.e. A = {#type(e) | c ∈ L ∧ e ∈ #trace(c)}.

We also define the following short notations for your convenience.

Definition 16 (Projection F). Given a log L and an event type E ∈ A, FE(L) filters L
and retain, for each of its traces, the event of event type E only.

For example, the trace sales order σS1 consists of two events, i.e. 〈(S1, created,
16-5-2020), (S1, latestchange, 10-6-2020)〉. If we apply the project function on the trace
σS1 with E = created, we obtain Fcreated(σS1) = 〈(S1, created, 16-5-2020)〉.

Definition 17 (Trace precedence <T). Given two traces σs and σt, σs <T σt, if and
only if, for each event es ∈ σs and et ∈ σt, the timestamp #time(es) of the event es is
before the timestamps #time(et).

For example, FE(σs) <T FE(σt) means that each event es ∈ σs which has the event
type E is executed earlier than each event et ∈ σt which has the event type E. σs =T σt,
σs >T σt, σs ≤T σt and σs ≥T σt are also similarly defined.

Interacting Traces We define a function #I T(cs) which returns the set of the instance
level interactions of case cs with the cases in artifact T .

Definition 18 (Function #I T(c)). Given a log L, of which each case is enriched with
instance level interactions, a case c, and artifact T, we use the notation #I T(c) to
retrieve the instance level interactions between the case c and the set of cases of artifact
T.

If we use the log shown in Figure 20 as an example, #I Delivery(S1) = {D1,D2},
#I ReturnOrder(S1) = {S3}, and #I Delivery(S2) = {D3}. If the case has no interaction
with the given artifact, an empty set is returned, e.g. #I ReturnOrder(S2) = ∅.

Definition 19 (Function I). Given two event logs LS and LT , we define I(LS,LT) =
{(cs, ct) | cs ∈ LS ∧ ct ∈ LT ∧ ct ∈ #I T(cs)} ⊆ LS × LT as the set of trace level
interactions between the logs LS and LT , where each (cs, ct) ∈ I(LS,LT) indicates that
there is an instance level interaction between the two traces cs and ct seen from the
parent artifact AS to the child artifact AT .

We illustrate the function I with the OTC example shown in Figure 18(b). Assume
we have extracted an event log of the artifact Sales Order with trace level interactions to
the artifact Invoice and an event log of the artifact Invoice (i.e. the artifact Sales Order
is the parent artifact). We use the trace id to represent the trace. Thus the set of trace
level interactions I(LSalesOrder,LInvoice) = {(S1,B1), (S1,B2), (S2,B2)}.

Definition 20 (Event type level interactions (ETLI)). Given two artifact types AS and
AT , and their set of event types AS and AT , respectively, an event type level interaction
(ap, ac) between AS and AT satisfies, at least, the requirement that ap ∈ AS and ac ∈
AT , or vice versa.

In the following, we present two methods to identify event type level interactions
between the events of two interacting traces LS and LT . More specifically, we identify
the relation X ⊆ (AS ×AT) ∪ (AT ×AS) where AS and AT denote the event types of
LS and LT , respectively.

ETLI Discovery by Merging Logs The first idea for discovering event type level
interactions is to compute a merged trace from any two interacting traces of artifacts
A1 and A2 (by putting all their events in one trace). Doing this for all interacting traces
gives a merged log. Applying a classical process discovery algorithm then allows to
identify causal dependencies between activities from artifacts A1 and A2. These can be
interpreted as event type level interactions between A1 and A2.

We present the CalcETLInteractionsByMergingLogs algorithm below. In general,
for each (σs, σt) ∈ I(LS,LT), we merge the two traces to a new trace using the merge
function M (see Line 5) that simply builds the union of the events of two traces σs

and σt and orders all events by their timestamp (see [51] for a formal definition). All
merged traces are added to the log Lnew containing events originally from two artifacts.
Now, a process discovery algorithm Miner() can be applied on the merged log Lnew to
discover dependencies between the two sets of event types, i.e.AS andAT . (see Line 7).

Each direct succession (Ei,Ej) between the two event types Ei and Ej discovered where
Ei ∈ AS and Ej ∈ AT (or vice versa) is considered an event type level interaction
between artifacts AS and AT , and added to the result X (see Lines 8-9).

Algorithm CalcETLInteractionsByMergingLogs(LS,LT)
1. if I(LS,LT) = ∅
2. then return ∅
3. else Lnew ← [], X ← ∅
4. for (σs, σt) ∈ I(LS,LT)
5. do σnew ←M(σs, σt)
6. if σnew 6= 〈〉 then add σnew to Lnew

7. Mnew ← Miner(Lnew)
8. for (Ei,Ej) where Ej is a direct successor of Ei in the model Mnew, and

(Ei,Ej) ∈ AS ×AT or (Ei,Ej) ∈ AT ×AS

9. do add (Ei,Ej) to X.
10. return (Lnew,X)

For example, if we use the heuristic miner as the Miner(Lnew), a simple causality net
DG = (Anew,D), in which D ⊆ Anew × Anew indicates the direct succession between
event types, is obtained from the log Lnew. Here, a dependency (Ei,Ej) ∈ D with Ei ∈
ALS and Ej ∈ ALT (or vice versa) is returned as an event type level interaction. When
using a miner that returns a Petri net, we first compute the direct succession between
transitions by omitting the places and then identify event type level interactions.

An important remark is that different process discovery techniques return a differ-
ent set of event type level interactions. The meaning of an event type level interactions
identified also varies depending on the discovery miner chosen as Miner(L). For ex-
ample, the interactions (dependencies) between two event types identified by the alpha
miner are absolute precedence, thus event type A always before event type B, and no
B is found before A in the log. In contrast, the event type level interactions returned by
the flexible heuristic miner have a different meaning, i.e. event type A is mainly before
event type B, and B before A is much less frequent (or lower than the threshold) in the
log.

ETLI Discovery by Using Defined Criteria Using an existing miner to identify in-
teraction may not be feasible in all situations. In particular the miner might produce
models of low quality on the given data, or the user might not be interested in all in-
teractions, but only in a specific subset. For such situations, we introduce a different
method for identifying event type level interactions based on a simple precedence of
events and time intervals between directly succeeding events. This method allows to
consider all possible interactions (including outliers) or filter interactions based on a
well-defined criterion.

We define several criteria, and for each criterion, a suitable situation is given as an
example to use this criterion. For all criteria, let LS,LT be two logs with event types AS

and AT respectively, and | I(LS,LT) |> 0. Further, assume a user selected subsets of
event types with AsubS ⊆ AS,AsubT ⊆ AT . We would like to find a set X of event type
level interactions betweenAsubS andAsubT such that one of the following criteria holds.

Definition 21 (Criterion absolute precedence). For each (Ep,Ec) ∈ AsubS × AsubT ∪
AsubT × AsubS, (Ep,Ec) ∈ X is an ETLI according to absolute precedence, iff, for all
(σs, σt) ∈ I(LS,LT) : FEp(σs) ≤T FEc(σt)

The criterion absolute precedence basically says that in every trace any event of
type Ep happens before any event of type Ec, without any exceptions.

It is possible that there might be exceptions. For example, the event type Created
of sales orders should always happened before the event type Created of the related
deliveries, but the recorded data may have been entered manually, and therefore, some
deliveries are created before the creation of orders (and other events could happened
between). To be able to detect both the “majority flow” and the “minority flow”, we
define the existing precedence criterion which says that there exists a trace where Ep is
preceded by Ec.

Definition 22 (Criterion existing precedence). For each (Ep,Ec) ∈ AsubS × AsubT ∪
AsubT × AsubS, (Ep,Ec) ∈ X is an ETLI according to existing precedence, iff, there is
(σs, σt) ∈ I(LS,LT) : FEp(σs) ≤T FEc(σt)

From a time perspective, we also consider event types that always happen shortly
after each other, i.e. the average time duration between the events of the two event types
are shortest. We call this the shortest time criterion.

Definition 23 (Criterion shortest time). (Ep,Ec) ∈ X is an ETLI according to shortest
time, iff, (1)

min (Ep,Ec)∈AsubS×AsubT (
∑

(σs,σt)∈I(LS,LT) AvgTimeDur(FEp (σs),FEc (σt))

|I(LS,LT)|)

or (2)

min (Ep,Ec)∈AsubT×AsubS(
∑

(σs,σt)∈I(LS,LT) AvgTimeDur(FEp (σs),FEc (σt))

|I(LS,LT)|)

Note that in each pair of interacting logs, there is only one pair of events with a
shortest time interval. Despite this limitation, we found this criterion in our case studies
(see Section 7) to be very effective in identifying the main event type level interactions
and hiding the complexities of interleaving relations between artifacts.

In addition, we define event level interactions using merged traces, based on which
we then introduce the criterion existence of an event level interaction, which to some
extent indicates the set of all possible event type level interactions.

Definition 24 (Event level interactions). Let σ = 〈e1, e2, · · · , en〉 be a trace. For all
i = [1, ..., n − 1], we call event ei+1 the direct successor of ei; we write (ei, ei+1) ∈

succ(σ). Let succ(L) denote the direct successors of all traces in L. Now, if L is merged
from two logs LS and LT (using the function described in Section 5.4), an event ei ∈ L
indicates ei ∈ ES ∪ ET which is the union set of events of LS and LT . We define an event
level interaction as follows. A succession (ei, ei+1) ∈ succ(L) with L merged from LS

and LT is an event level interaction between the two events if and only if ei ∈ ES and
ej ∈ ET or vice versa.

The criterion existence of an event level interactions states if there exists an event
level interaction (ei, ei+1) between two event types Ec and Ep, we consider (Ep,Ec) as
an event type level interaction.

Definition 25 (Criterion existence of an event level interaction). (Ep,Ec) ∈ X is an
ETLI according to existence of an event level interaction, iff, there exists (ei, ei+1) ∈
succ(L) such that (1) ei ∈ ES ∧ ei+1 ∈ ET (or vice versa) and (2) #type(ei) = Ep ∧
#type(ei+1) = Ec

The criterion max number of event level interactions explicitly count how often an
event level interaction occurs in the merged log and treat the maximal interactions.

Definition 26 (Criterion max number of event level interactions). (Ep,Ec) ∈ X is an
ETLI according to max number of event level interactions, iff, , iff,

max (Ep,Ec)∈AsubS×AsubT

⋃
(σs,σt)∈I(LS,LT)

(

{(ei, ei+1) | (ei, ei+1) ∈ σ ∧ σ ∈M(σs, σt)

∧#type(ei) = Ep ∧#type(ei+1) = Ec})
∨

max (Ep,Ec)∈AsubT×AsubS

⋃
(σs,σt)∈I(LS,LT)

(

{(ei, ei+1) | (ei, ei+1) ∈ σ ∧ σ ∈M(σs, σt)

∧#type(ei) = Ep ∧#type(ei+1) = Ec})

Identifying Unusal Interactions The two techniques introduced in Sections 5.4 and 5.4
are designed to identify the artifact interactions. However, a user might also be in-
terested in particularly finding outliers, i.e., deviations from the main flow. Next, we
present a corresponding technique based on the merged event logs of Section 5.4.

To identify outliers in the interaction, we first consider all event level interactions
(see Definition 24), thus the directly succeeding events (ei, ei+1) in a merged log. Using
these event level interactions, we can identify outliers as follows. On the merged log L,
we first consider all pairs of event types (of AS and AT) that directly follow each other
in some trace of L. Then we identify the main interactions between AS and AT by ap-
plying a suitable discovery algorithm on the merged log (the technique of Section 5.4).
Removing these main interactions from the set of all found direct successors yields the
infrequent interactions. The formal definitions are as follows.

Let the set Xall denote the event type level interactions identified based on the the
existence of an event level interactions criterion (which have included, to some extent,
all possible type level interactions), and let Xmain denote the event type level interactions
that we identified by applying a miner on the merged log. Since we assume the miners
identify the main flows, we consider Xall\Xmain as the set of unusual event type level
interactions (i.e. outliers).

5.5 Artifact-centric Model Discovery

We have shown two different methods to compute a set X ⊆ AS × AT ∪ AT × AS of
event type level interactions from two given event logs LS and LT . In this section, we
discuss how to discover an artifact-centric model.

Proclet System Discovery Formally, given a set of event logs {L1, · · · ,Ln}, let a set M
be the set of life-cycles discovered, i.e. each Mi ∈M is a (Petri net) model describes the
life-cycle of event log Li extracted for artifact Ai. Given two life-cycles MS,MT ∈ M,
we can use a mapping function X : (M × M) → A × A to return a set X of event
type level interactions between the two life-cycles (using our techniques in Sections 5.4
and 5.4), i.e. X ⊆ AS × AT ∪ AT × AS. In addition, for each model Mi, we have a
function ATi : Ai → Tiv that maps an event type to the corresponding labeled transition
in the model. To express the identified interactions between these life-cycle models,
we turn each model into a proclet and add ports and channels between transitions that
describe interacting event types.

We define the constraint that each port is connect to one transition, and each transi-
tion is only connect to one input port and one output port. This constraint is due to the
fact that when a transition is connected to two output ports, there is no explicit expres-
siveness (identifiable) to distinguish whether a message is sent via both output ports
(AND-splits), or it is only sent via one output port depending on a condition.

First, we create ports for each model MS ∈ M as follows. Given a model MS repre-
senting the life cycle of artifact AS, let XS =

⋃
Mi∈M X (MS,Mi) denote all interactions

that AS has with all other artifacts. For each event type Eout of the artifact AS if there is
an event type level interaction (Eout,Ei) ∈ XS and (Eout,Ei) ∈ AS × Ai, we create an
output port for the labeled transition ATs(Eout) in model Ms. For each event types Ein of
Ms, if there is an event type level interaction (Ei,Ein) ∈ Xs and (Ei,Ein) ∈ Ai ×As, we
create an input port for the transition ATs(Ein) in model net Ms.

Finally, we connect the output port of transition AT(Ei) to the input port of transition
AT(Ej) for each distinct type level interaction (Ei,Ej) ∈ X =

⋃
Mi∈M,Mj∈M X (Mi,Mj).

Simple Representation To be able to support business users by using our approach,
interviews have be conducted within KPMG to investigate the requirements of clients
for a suitable visual representation. The result of the investigation indicates that the
proclet notation might be too formal to be communicated with a non-technical process
stakeholder. One of the customers involved in the case study also indicated that he is
less interested in the notions of places, tokens, silent transitions, AND-splits and OR-
splits and finds the sequential relations containing adequate information. Therefore, we

developed a simpler notation to visualize the life-cycles and their interactions, which
is similar to a simple dependency graph. We obtained this simpler representation by
omitting the places of the Petri net and the ports of the system and directly connecting
the transitions with their successors. Examples are shown in Figures 25 and 3.

Complexity Analysis In this section, we provide a complexity analysis of our ap-
proach. The running time of algorithms are summarized in Table 2. We use the same
number to refer to the same step in the overview shown in Figure 4.

In the following analysis, we use | T | to denote the number of tables, | C | to
denote the number of columns, | F | the number of references, | A | the number of
artifact types, | E | the number of event types, and | L | to denote the size of log in term
of number of events.

The database schema identification (1.0), including primary key and foreign key
extraction, is an NP-hard problem. Our approach and tools support both importing the
existing data schemas, which takes O(| T | + | F |), as well as using the original XTract
approach to discover data schemas, which is exponential in number of columns.

The artifact schema identification (1.1) runs in linear with respect to the number of
tables or the number of references. The artifact identification (1.2), which follows, runs
in worst case O(| A | × | C |) because for each artifact type the algorithm has to include
all columns (as identifiers, event types, or attributes of the artifact type). The extraction
of a log of a defined artifact type (1.3) currently takes quadratic in terms of the number
of entries in the data set, in worst case, since each entry in the main table is joined with
all other entries to obtain its events and attributes. In theory, this running time can be
improved to be linear in terms of the number of entries. Finally, the complexity of the
discovery of a life-cycle of an artifact (1.4) depends on the discovery algorithm selected,
which might be linear or exponential in terms of the number of events of the log for the
artifact.

For discovering interactions between artifact types (2.1), the algorithm basically fol-
lows a depth-first-search to select all paths composed of references of which the number
of strong joins is at most k and the number of weak joins is at most m, and therefore,
grows exponentially in (k + m). The interactions between artifact types are then used
to extract interactions between artifact instances for logs (2.2), which takes quadratic in
terms of the number of entries in the data set and is executed during step 1.3. Discover-
ing interactions between event types (2.3) of two interacting artifacts requires to merge
their logs, which takes O(| L |2), to run a discovery algorithm. To discovery an artifact-
centric model, step 2.3 is re-run for every two interacting artifacts, and between each
two event types, thus O(| E |2), if they interact, we add an event type level interaction.

During the case studies, which is discussed in Section 7, steps (1.3) combined with
(2.2) are the most time-consuming part; to extract about 30000 traces, in total circa
30000 events, it takes almost a hour. Other steps executed during the two case studies
take less than ten minutes4.

4 We import the data schema, and for step (2.1) we use k = 2 and m = 1

Table 2: Running time analysis
Step Running time
1.0 NP-hard or O(| T | + | F |)
1.1 O(| T | + | F |)
1.2 O(| A | × | C |)
1.3 O(| Entries |2)
1.4 running time on the discovery algorithm selected
2.1 O(| A | × | F |k+m)
2.2 O(| Entries |2)
2.3 O(| L |2 + running time of discovery algorithm)
2.4 O(| E |2)

6 Artifact-Centric Process Mining Methodology

In this section, we explain our methodology for conducting an artifact-centric process
analysis project, which we also employed during our case studies. Figure 21 shows
the methodology and indicates which parts of the methodology is supported by our
approach and implementation.

An artifact-centric process analysis project starts with selecting a data source to be
analyzed, and users can import the data source and data schema using our approach;
XTract [18] can be used to automatically discover an unknown data schema. After im-
porting the data source, users can discover, create and modify artifact schemas, their
artifacts and interactions between them based on the methods described in Sections 4.3,
4.4 and 5.2. Once the artifacts and the interactions between them are specified, our
techniques can automatically extract an event log for each artifact, as shown in Sec-
tions 4.5 and 5.3. The logs are used to discover an artifact-centric process model that
shows the life-cycle of each artifact and the interactions between the artifacts during
their life-cycle, which are discussed in Sections 4.7, 5.4 and 5.5. Domain experts can
use this model to analyze and evaluate the business processes in its context and refine
the artifacts, their event types and their interactions if desired. It is common practice in
process analysis to refine the analysis and data extraction in several iterations.

During the case study, we obtained some best practices with respect to constructing
and evaluating an artifact-centric model. To start with, it is much easier to first create
an overview of simple artifacts, each of which has only one or two event types (e.g.
only Created), and with no more than two interactions between any two artifacts,
to help both analysts and clients to start the analysis and to understand the main flow
of the process. Moreover, such a simple overview can be used to communicate between
stakeholders, to further elaborate on requirements and questions, and to find more fine-
grained or more complex artifacts. For example, in Section 2.3, the example of the
artifact-centric model shown in Figure 3 is much easier to understand than the other
three. This observation is also verified later during the case study for the Oracle Project
Administration process when we tried to communicate with the clients for the first time.

Generally, with respect to evaluating artifacts, we suggest to have simple artifacts
and to include only one-to-one relations within artifacts, with one exception: if the
entries in the table (to which the artifact’s main table is related via a one-to-many rela-
tion) can not be considered as instances of any other artifacts but purely denoting events.

Data
source

Artifact schemas /
Artifact types

Logs
+

Interactions

Artifact-centric
models

Refine Artifacts

Evaluate

Repository
of schemas

Discover Extract

Good
to use

Import /
Discover

Where our
approach
supports

Objects

Methods

Fig. 21: The methodology used for conducting artifact-centric process analysis
projects

For example, the change tables in SAP (CDHDR and CDPOS) only contain events that
describe the changes of artifact instances, then it is harmless to include them as events
of the artifact. Otherwise, it is better to consider the table as a separate artifact.

With respect to discovering and evaluating interactions between artifacts, we discuss
the following cases which we learned during our Oracle case study (discussed in Sec-
tion 7.4). When the artifacts in a model are clear and simple (e.g. less than two events),
one can use the merged traces method to use discovery algorithm to discover the main
event type level interactions. However, when the complexity of artifacts increases, the
interactions discovered using this method are too complex to start with business users.
In this situation, it is better to start with one of the criteria that only result in at most
two interactions between artifacts (e.g. Definition 23 criterion shortest time). After the
main flow of the model is understood, analysts can use discovering all interactions and
outliers to inspect infrequent or abnormal flows individually.

To refine or evaluate artifacts and their interactions, if an artifact appears to be
interesting, one can start to unfold / extend the artifact by adding more tables
and include more event types. These event types are then also taken into account
when discovering interactions. An example of extending simple artifacts is discussed
using the SAP case study in Section 7.3. As a general rule, we found that two event
types should only be included in the same artifact type if one wants to compare
the order of their occurrence on the same time-line, for example, if we want to
known when deliveries and return orders happened during the life-cycle of a sale-order.
Generally, the definition and refinement of artifact types should orient along the
intended conceptual business objects; a domain expert should validate the scope of
the extracted business objects, a data expert can help in refining the artifact definition
in order to retrieve the intended schema from the relational data source as explained in
Section 4. To summarize, we suggest to start analyses with simple, clear artifacts and
interactions and then gradually extend the artifacts and include more interactions while
focus on the interesting observations made using discovered artifact-centric models.

7 Empirical Evaluation

We implemented the techniques presented in Sections 4 and 5. In this section, we briefly
describe our implementation and then describe two real-life case studies where this tool
was used.

7.1 Prototype Implementation

Our implementation consists of two parts. A standalone tool which is an extension
of XTract [18] and implements the techniques described in Sections 4 and 5 for dis-
covering artifact types and interactions between the artifact types, and for extracting
life-cycle logs that are enriched with information about interactions between artifact in-
stances. The tool reads as input the contents of a relational database. Then the user can
import or automatically discover artifact schemas; for each schema the user can spec-
ify various artifact types choosing which events and attributes to include. Similarly, all
valid artifact interactions are computed and the user selects the interactions of interest.
From this selection one event log per artifact type is extracted containing the artifact’s
life-cycle and its interactions to other extracted artifacts.

The second part of our implementation is a plugin to the Process Mining toolkit
ProM5. The plugin takes as input a set of extracted life-cycle logs. Then, a life-cycle
model is discovered for each artifact and the user can choose which method to use
for discovering artifact interactions. The resulting life-cycle models with interactions
are shown graphically to the user on a screen where she has various filtering options
available, for instance to highlight outliers. See [51] for details.

7.2 Case Study Design

The goal of the case studies was to evaluate the feasibility and practicability of our
approach in a real-life setting. More specifically, we wanted (1) to verify whether our
approach can indeed discover an artifact-centric process model including interactions in
a practical setting as a proof-of-concept and (2) avoid false positive flows that showed
up in earlier approaches because of convergence and divergence (see Section 2.2). Fur-
thermore, we wanted to evaluate whether (3) the discovered model and interactions can
provide accurate data- and facts-based insights of the given data source helping a busi-
ness analyst to analyze the process and (4) whether the discovered models can be used
to communicate with and understood by process stake holders with ease.

The first case study was performed in the Order to Cash (OTC) process of SAP.
In this case study, we emphasized on the execution of our approach such as decisions
about the artifact selection and interaction selection since no customer was involved.
The second case study was conducted in the Project Administration (PA) process of
Oracle. Since real customers were involved, we emphasize the discussion of the result
of analyses.

For each case study, we (1) introduce the process and the data source, (2) explain the
execution of our approach including decisions made, and (3) discuss observations and

5 www.promtools.org

www.promtools.org

results we have obtained. In addition, during the first case study, we compare our artifact
discovery to the one used by the original XTract approach, and we show some statistics
about the false-positive flows with respect to a classical log conversion approach.

7.3 Case I - SAP Order To Cash Process

The first case study was performed for the Order to Cash (OTC) process supported
by SAP systems. The data has been provided by KPMG. The main goal of this case
study was to evaluate the technical abilities of our technique. Thus, the authors with an
affiliation to KPMG, who are the experts in ERP systems and data analytic and have
rich experience of conducting advisory projects for clients, provided the requirements
and evaluated the results based on their experiences in earlier projects.

SAP OTC process and data structure A default OTC process in SAP starts with cre-
ating a sales order. After the order is delivered, a delivery document is created. Then, an
invoice document is created in the system, sent to customer and posted in the account
receivable (table). After receiving the payment, this default OTC process ends. How-
ever, there are many complex variations of this process. For example, the orders could
be linked to a contract document, or return orders could be placed and return deliveries
are made. Credit memo requests might be received from customers when the goods are
incomplete or damaged. Invoices might also be canceled.

The data structure used to support the OTC process allows flexibility to deal with
the aforementioned variance, but it is also very complex. The relational data structure
of SAP regarding the relevant tables of this case study is discussed in [51].

SAP OTC - Extraction and Discovery In this section, we emphasize the steps taken
and decisions made to obtain an artifact centric model for the SAP - OTC process.

Table

Name Constraint and Time scope

Row Count

used

Column

Count

BKPF where '2012-09-01' <= cpudt and cpudt < '2012-11-01' and awtyp = 'vbrk' 11358 32

BSID where '2012-09-01' <= cpudt and cpudt < '2012-11-01' 4428 49

BSAD where '2012-09-01' <= cpudt and cpudt < '2012-11-01' 911 49

CDHDR

 where '2012-09-01' <= [UDATE] and [UDATE] < '2012-11-01' and (

cdhdr.objectclas = 'VERKBELEG' or cdhdr.objectclas = 'faktBELEG') 13903 9

CDPOS

 inner join cdhdr on cdhdr.changenr = cdpos.changenr where '2012-09-01' <=

[UDATE] and [UDATE] < '2012-11-01' and (cdhdr.objectclas = 'VERKBELEG' or

cdhdr.objectclas = 'faktBELEG') 56018 10

DDFTX where tabname = 'vbak' or tabname = 'vbrk' 237 5

VBAK where '2012-09-01' <= erdat and erdat < '2012-11-01' 3383 40

VBAP where '2012-09-01' <= erdat and erdat < '2012-11-01' 4317 35

VBRK where '2012-09-01' <= erdat and erdat < '2012-11-01' 5285 37

VBRP where '2012-09-01' <= erdat and erdat < '2012-11-01' 10206 31

LIKP where '2012-09-01' <= erdat and erdat < '2012-11-01' 11623 51

LIPS where '2012-09-01' <= erdat and erdat < '2012-11-01' 13157 15

Fig. 22: SAP OTC process - tables and record counts

First, we imported 11 tables shown in Figure 22 in which the name of the tables, the
constraint for selective import, the number of records used, and the number of columns
are described. We considered only the documents created between ‘01-09-2012’ and

‘31-10-2012’. As some time columns in the OTC process data were not recorded, we
only considered ‘date-stamps’. Primary keys and foreign keys where imported based on
domain knowledge [51].

Second, we observed in the data that documents (e.g. a sales order) and lines (e.g.
line items in a sales order) are stored separately in different tables. Moreover, the line-
level objects have their own life-cycles which could be independent of the related doc-
ument objects. For example, a line item might be rejected but the sales order is still
pursued. As the line objects have many-to-one relation with their related document ob-
jects (e.g. a sales order can have multiple sales lines), documents and lines were split
into separated artifact schemas (automatically done by the algorithm in Section 4.3),
leading to 8 artifact schemas in total. For the sales documents (i.e. table VBAK) and
lines (i.e. table VBAP), delivery documents (i.e. table LIKP) and lines (i.e. table LIPS),
and invoice documents (i.e. table VBRK) and lines (i.e. table VBRP), there is a column
vbtyp in the document tables that indicate the type of documents. Therefore, we created
the artifacts of documents and lines based on the values found in this column. In total,
we identified 35 artifacts. Figure 23 shows some example of the artifact schemas and
the artifacts we identified. The complete list can be found in [51].

Art.Schema Maintable Artifact Artifact condition Extracted

BKPF BKPF PostInAR <maintable>.awtyp = 'VBRK' Yes

Payment05or15

(<maintable>.bschl = '05' or

<maintable>.bschl = '15') Yes

Payment01or11

(<maintable>.bschl = '01' or

<maintable>.bschl = '11')

VBAK VBAK Order H <maintable>.vbtyp = 'C' Yes

VBAP VBAP

Order L

inner join tableVBAK s4 on

<maintable>.vbeln = s4.vbeln

and s4.vbtyp = 'C'

BSAD BSAD

Fig. 23: SAP OTC process - artifacts

To create a high-level overview of the OTC process, our business analysts suggest
to only consider the document level artifacts for now and omit the line level artifacts.
Therefore, we identify all possible type level interactions between artifacts (Figure 24
shows a screen shot of the interaction graph that is constructed) and selected the (direct
and indirect) interactions between document level artifacts for the data extraction, as
follows. The predecessor relation which indicates the transformation (or causality) be-
tween objects (indicated by the foreign key relation vgbel and vgpos columns) is very
interesting. However, the predecessor relation is mainly between lines, whereas we
would like to identify interactions between the documents. To obtained the predecessor
relation between document artifacts, the indirect interactions that join a document arti-
fact with its line artifact, and then join the line artifact with its predecessor line artifact
(preceding lines), and finally with the (preceding) document artifact to which the pre-
ceding line artifact is related (i.e. the number of strong joins k = 2, the number of weak
joins m = 1) are required. Whenever this key relation contained a record, we select
the indirect interactions between documents based on this key relation. Furthermore, as

one of our goal was to identify outliers, we included any interaction between document
artifacts with at least one record (i.e. the least number of instance interaction r = 1).

Fig. 24: SAP OTC process - interaction graph

For each artifact shown in Figure 25, we obtain an event log with trace level inter-
action. In total, 18 event logs are extracted and imported into ProM. Using the heuristic
miner as the life-cycle miner and as the miner for discovering interactions on the merged
logs, we obtain the artifact-centric model. Filtering the life-cycle logs to contain only
Creation events prior to discovery allowed us to first obtain an overview on the process
that is shown in Figure 25.

SAP OTC - Process Analyses and Discussion In this section, we discuss three obser-
vations: identifying unusual flows, drilling down from an overview to details by creating
complex artifacts and the complexity of interactions.

Identifying Unusual Flows. As the high-level model of Figure 25 only contained
the dominant artifact interactions, we set on to identify unusual flows using the exis-
tence of an event level interactions criterion (described in Section 5.4). The red arc in
Figure 26 shows the unusual event type level interactions which were revealed by using
this criterion. This unusual flow from Payments Received to Invoice Created indicates
that there were payments received before the corresponding invoices were created in
the account receivable.

We verified the existence of this unusual flow in the database (the SQL query used
can be found in [51]) and found that for the cases that caused this flow, the database
indeed contained a Payment Received date earlier than the Posted In AR date. This usual
flow indicates that a manual change was made to the payment record, or a payment
was made before the corresponding customer invoice was recorded in the system. The
latter case can occur if payment was recorded through bank statement transfer, and

Fig. 25: SAP OTC process - artifact-centric model with simple representation

Zoom-in

Fig. 26: SAP OTC process - artifact-centric model with outliers

the system was unable to apply the cash to an invoice. Later, the invoice is posted
and manually matched to the already received payment. Both cases indicate a deviation
from a reference sales process and/or untimely recording of customer liabilities. Further
investigation revealed that the cases was (indeed) manually changed by someone using
the transaction code FB05, which is used to apply for cash (automated or manually)
incurring risks. In other words, we have successfully and exploratively discovered a
true-positive unusual action.

Creating Complex artifacts. After this initial analysis on the basic relations of the
creation of documents in the process, we conducted a second analysis to consider the
life-cycle of the Sales Order artifact in more detail. For this, we returned to the data
extraction and now included in the Sales Order artifact type all event types found in
the change tables CDHDR and CDPOS; see [51] for details. Since the trace identifiers
have not changed, and interactions have not changed, there is no need to re-extract
other artifacts. Using the max number of event level interactions criterion, we obtain
the artifact centric model shown in Figure 28.

Fig. 27: SAP OTC process - the Orders artifact with change event types

Fig. 28: SAP OTC process - the same artifact-centric model as Figure 25 except the
life-cycle of artifact Sales order is extended

Complexity of Interactions. Note that we can now identify clear difference in
event type level interactions between the sales order artifact and other artifacts. The
red circles indicate an interesting difference. For example, most artifacts, e.g. Delivery,
Credit Memo Request, Debit Memo Request are generally created directly after the cre-
ation of Sales Order, whereas the invoices (that are directly related to a sales order via
vgbel and vgpos) are created after the Release Date change event type of this sales or-
der. Similar for the invoice cancellation artifact, of which the creation generally takes
place after the Next Date of the sales order changes.

At this point, while the results show that the first three goals (see Section 7.2) have
been achieved, we also noted a limitation of our technique. Showing all interactions dis-
covered on the merged log makes the artifact-centric model very complex and almost
impossible to analyze, further simplification or filtering techniques have to be devel-
oped.

Comparing to Existing Approaches In this section, we compare our approach to a
classical log conversion approach and the original XTract approach using the data set
from the SAP case study.

8

1

1472

1

6

341

346

53

59

142

18

17

90

108

138

1

141

13

3

257

22

65

47

2

278

1360

1

2439

23

907

1

46

620

597

1

1

212

1

1

1

2

22

10

12

6

1

2

1

15

107

78

26

31

7

12

371

316

2

11

49

9

15

22 1

89

1

3

18

1298

854

354

42

5 9

1

14

15

1140

646

39

46

55

641

14

304

271

568

734

625

4

8

49

7

5

6

Created

2581

Delivery H_Created

5118

Payment05or15_Payment Received

822

PostInAR_PostedInAR

3479

Invoice H_Created

2629

InvoiceCancellation H_Created

40

Contract H_Created

741

ProFormaInvoice H_Created

730

ReturnDelivery H_Created

1

CreditMemo H_Created

34

ReturnOrder H_Created

1

CreditMemoRequest H_Created

33

DebitMemoRequest H_Created

2

DebitMemo H_Created

14

Fig. 29: SAP OTC process case study - a life-cycle of sales orders obtained using a
classical log conversion approach.

Comparing To Classical Conversion Approach - False Positive Flows. To show
the improvements of artifact-centric approach with respect to reducing the number of
false positive “abnormal flows”, we defined the artifact Sales Order that includes all the
selected event types shown in Figure 26. In other words, we use the sales orders as our
case notion and merged all events related to a sales order to the trace of this sales order.
More specifically, if an event e is indirectly related to a sales order via multiple other
artifacts or events, the event e is only added once to the trace of this sales order. The
artifacts of which no event is related to any sales order is neglected. The events with the
same time-stamps are sorted randomly.

The directly-follows-graph of the sales-order-oriented event log is shown in Fig-
ure 29. While created based on the same data source and with less events (because
many events are not related to any sales orders), the life-cycle model shown is much
more complex due to data divergence and convergence problems. We observed that 9
out of the 14 event types have a self-loop, e.g. Delivery H Created, Invoice H Created,
PostInAR PostedInAR, which violates the artifact-centric model obtained and the fact
that no event in the original data set is directly related to another event of the same type.

We count the absolute number of directly follows relations between event types and
summarize them in Figure 30. In total, we found that 6696 out of 13644 directly follows
relations directly or transitively violate the flows shown by the artifact-centric model in
Figure 25, which is about 50%. 36 out of the 79 number of arcs found in Figure 29,
each of which indicates a causality dependency between the source and the target event
types, violates the causality dependencies indicated by the artifact-centric model. Thus,
almost 50% of the dependencies, between events and between event types, are false.

Besides causing these false positive “abnormal flows”, the statistics related to the
number of events are also polluted. A clear example that shows the data convergence
problem is the 119% increase in the number of contracts, i.e. from 338 (shown by the
original data set and the artifact-centric models) to 741 (shown by the directly-follows
graph in Figure 29). The contract created events are duplicated because a contract can
be related to multiple sales orders.

Comparing to Artifact Discovery of the original XTract Approach. The original
XTract approach uses k-means clustering approach to automatically discover a set of
artifact types if the number of artifact types is given. We import the keys from our

n: violating n: non-violating n: C O D RO RD I DR DM IC CR CM PI AR P Total

C 0 371 316 0 0 15 0 0 0 0 0 9 22 0

O 53 0 1472 0 0 346 0 0 0 0 0 59 341 6

D 46 907 2439 0 0 597 0 0 1 1 1 212 620 23

RO 0 0 1 0 0 0 0 0 0 0 0 0 0 0

RD 0 0 0 0 0 0 0 0 0 0 1 0 0 0

I 0 65 47 0 0 142 1 0 17 3 1 90 1360 278

DR 0 0 0 0 0 0 0 2 0 0 0 0 0 0

DM 0 0 0 0 0 0 0 3 0 0 0 0 5 0

IC 0 0 1 0 0 10 0 0 2 0 0 0 22 1

CR 0 0 1 0 0 1 0 0 0 6 12 0 8 0

CM 0 0 0 1 0 1 0 0 0 7 2 0 15 1

PI 0 18 141 0 0 138 0 0 2 2 2 257 108 13

AR 1 49 42 0 1 1298 1 9 18 14 15 89 854 354

P 0 31 12 0 0 26 0 0 0 0 0 0 78 107

100 1441 4472 1 1 2574 2 14 40 33 34 716 3433 783 13644

100 1070 2683 1 1 1468 1 12 20 27 17 257 932 107 6696

100% 74% 60% 100% 100% 57% 50% 86% 50% 82% 50% 36% 27% 14% 49%

79

0 36

53 0

46 907 2439

0 0 0

0 0 0 0

0 65 47 142

0 0 0

0 0 0 0 0 3

0 0 1 0 2

0 0 1 1 6

CreditMemoRequest H_Created

CreditMemo H_Created

ProFormaInvoice H_Created

ReturnDelivery H_Created

Invoice H_Created

DebitMemoRequest H_Created

DebitMemo H_Created

InvoiceCancellation H_Created

aligning

Contract H_Created

(Order) Created

Delivery H_Created

ReturnOrder H_Created

PostInAR_PostedInAR

Payment05or15_Payment Received

Sum total number of edges

Sum the number of "False" edge

Relative False Edges w.r.t. Total in %

Fig. 30: Statistics w.r.t. directly-follows relations discovered in the sales-order-
oriented log

repository because the XTract approach was unable to discover the primary keys and
foreign keys of SAP tables.

The artifact schemas returned by the XTract approach are listed in Table 3 when
given k as the number of artifact types. Each artifact schema is converted into an artifact.
For instance, when k is 2, tables from VBAP to BSAD are returned as one artifact type
(C2) with main table VBRP; when k is 5, tables VBAK, VBAP, LIPS and LIKP are
returned as one artifact type (C5) with the main table VBAP.

As shown by Table 3, when the number k of artifacts is chosen well, e.g. between
7 and 9, the resulting artifact types are simple and reasonable, each of which only in-
cludes one or two one-to-many relations within an artifact, thus very similar to the ones
returned by our approach. However, there are three limitations shown by the table. First,
when the number k of artifacts is small (e.g. 2 ≤ k ≤ 6), the k-means clustering algo-
rithm neglects the divergence and convergence problem and places many tables in the
same cluster (e.g. clusters C2 and C5). These clusters result in complex and difficult-to-
understand life-cycles such as the one shown by Figure 29. Second, when the number k
of artifacts is large (e.g. ≥ 10), empty clusters are returned (e.g. C10). Third, the tables
of each of these clusters can only be completely mapped to an artifact; no subset of the
tables can be considered as an artifact. This limitation obstructs us from identifying, for
example, different document types as different artifact types.

In comparison to our artifact discovery, we identify artifact schemas automatically,
no need to choose a k for the number of artifacts. The artifact schemas can also be
automatically mapped to one artifact. However, manual inputs are needed to discover
more fine-grained artifacts.

7.4 Case II - Oracle Project Administration Process

The second case study is performed for the project administration (PA) process sup-
ported by the Oracle information system of an educational organization. This case study
is performed on request of an educational organization to who we refer as the client.
For this case study, we first downloaded a dataset from the client’s information system,
then analyzed the data and provided the client with feedback about our findings.

Table 3: Artifact schemas obtained using the original XTract approach.
k 2 3 4 5 6 7 8 9 10

CDPOS C1 C1 C1 C1 C1 C1 C1 C1 C1
CDHDR C2 C2 C2 C2 C2 C2 C2
VBAK C8 C8 C8
VBAP C2 C5 C5 C5 C5 C5 C5
LIPS
LIKP C7 C7 C7 C7
VBRK C6 C6 C6 C6 C6
VBRP C2 C3 C3 C3 C3 C3 C3 C3
BKPF C3 C4 C4 C4 C4 C4 C4 C4
BSAD C9 C9

no table C10

Oracle PA Process and Data source An educational organization has thousands of
projects running, e.g. different research projects. The project administration process
supported by Oracle starts with creating projects in the system. At the moment of cre-
ating a project in the system, it is usually definitive that the project will be executed. It
is possible that the project has already started before it is added to Oracle PA. After the
project is created in the system, one can specify relevant information of the project such
as its starting date. During the execution of the project, tasks are created for the project
to declare different expenditures related to a task, e.g. personnel, materials. For assess-
ing financial risks, it is important that the ending date of expenditures is before the the
complete date of tasks. Moreover, all tasks should be completed before the completion
date of the project. When the project is completed, it means that the main activities,
such as the research itself, are finished. When the administration work is completed,
such as financial checks, the project is closed.

For this case study, 18 tables were downloaded, and 7 tables were used in the actual
analysis as shown in Figure 31. For our analysis, we considered data recorded between
01-06-2012 and 31-12-2012. The number of the records of each table used in the pro-
cess analysis is also shown in the fourth column of Figure 31. Documentation about the
data schema (esp. primary keys and foreign keys) was available.

Oracle PA - Extraction and Discovery In the chosen data, the table PA PROJECT STATUSES
did not contain any information relation to process steps and were omitted from the
analysis. Each of the remaining six tables was considered an artifact schema and also
mapped to one artifact type, respectively. The six artifacts are shown in Figure 32.
Seven direct type level interactions are found between the artifacts which are shown in
Figure 33.

For the log extraction step, we considered only the artifacts Projects, Tasks and
Expenditures as these are the primary objects in the process. The three event logs were
imported into ProM. We confirmed that the number of traces (or cases) of an event log
matched the number of the row count of the corresponding main table. The projects

Table Name

Row Count

downloaded Used

Row Count

used

Column

Count

FND_USER 905 905 27

HR_ALL_ORGANIZATION_UNITS 1053 1053 43

MTL_SYSTEM_ITEMS_B 0

OE_ORDER_HEADERS_ALL 0

PA_COST_DISTRIBUTION_LINES_ALL 95943 x 5543 15

PA_EXPENDITURE_COMMENTS 55149 30511 7

PA_EXPENDITURE_ITEMS_ALL 96978 x 5620 32

PA_EXPENDITURE_TYPES 94 x 94 10

PA_EXPENDITURES_ALL 682590 x 3100 24

PA_PROJECT_CUSTOMERS_V 16238 16238 17

PA_PROJECT_STATUSES 80 x 80 23

PA_PROJECTS_ALL 5364 x 1132 29

PA_TASKS 2416 x 1236 31

PA_TRANSACTION_SOURCES 48 48 4

PAY_COST_ALLOCATION_KEYFLEX 1694 1694 11

PO_HEADERS_ALL 5186 5186 139

PO_LINE_LOCATIONS_ALL 7700 7700 148

PO_LINES_ALL 7700 7700 135

Fig. 31: Oracle PA process table record counts

log, the task log and the ExpAll log have each in total 5329, 4383, and 9300 events,
respectively.

For the artifact-centric process discovery, the heuristic miner was used as the life
cycle miner and as the miner for discovering interactions on the merged logs. We ob-
tain the following proclet model in simple representation shown in Figure 34. In a sec-
ond run, we used the max number of event level interactions criterion (defined in Sec-
tion 5.4) to identify the event type level interactions, to obtain a simpler model shown
in Figure 35 which can be communicated with business users with more ease.

Process Analyses Result and Discussion Since we aim to perform process analysis
using the artifact centric approach, the results obtained were discussed and validated
internally as well as with the client. We found a set of unusual flows both within ar-
tifacts as well as in interactions between artifacts using the discovered artifact-centric
model(s). We were able to retrieve the cases for each unusual flow we found and verified
them in the original database. An interview with the client was conducted during which
the unusual flows were discussed. Since the identification of unusual flows within arti-
facts are already covered by classical process mining techniques, we here focus on the
unusual interactions and discuss two findings in detail. For more findings and discus-
sion, we refer to [51]. In the following, we use the number between the parenthesis to
refer to the corresponding finding annotated with the same number shown in the figures.

We observed cases where a task had been started before the related project had
been created as shown in the model in Figure 36. In the interview, the client asked for
the time duration between these two events. The client indicated that when creating a
project in the system, the specification of all tasks related to this project are known, thus
the creation time of tasks should happen shortly after the creation of the project in the
system. If not, it may indicate that double administrative work have been performed.

Artifacts Maintable Extracted

Interaction

From To via

Project PA_PROJECTS_ALL x Project Tasks

ExpAll PA_EXPENDITURES_ALL x Tasks ExpAll ExpItem

Tasks PA_TASKS x

CostDistr PA_COST_DISTRIBUTION_LINES_ALL

ExpItem PA_EXPENDITURE_ITEMS_ALL

ExpTypes PA_EXPENDITURE_TYPES

Fig. 32: The artifacts created for Oracle PA process

Fig. 33: Interaction graph of PA artifacts

Since the average time of different event type level interactions is calculated for the
shortest time criterion defined in Section 5.4, we were able to retrieve this average time
between the creation of project and tasks easily (see Figure 36 (5)), which is 1.088 day.
As the average time might be an inaccurate indication, the client was asked to give a
maximal threshold, which was less than or equal to two weeks. We had to verify this
property manually in the database. Of the 1236 tasks, we found 1197 tasks that had
been created less than a day after the project was created; 8 tasks that had been created
between a day and 14 days after the project was created; and 31 tasks had been created
later than 14 days after the project had started. We found no task had been created before
the creation of its project (which show that our model has correctly shown the flows),
see Figure 36 (5).

Another unexpected unusual observation that we made on the data was that there
were many projects closed before the related tasks completed [51]. This ordering of
events indicates the risk that expenditures can be booked on the tasks while the project
is already closed. Therefore, the client asked us to further investigate whether there are
expenditures created after the projects are closed or completed. For this analysis, we

Fig. 34: A proclet system discovered using merging logs method

Fig. 35: A proclet system discovered by using the max number of event level inter-
actions criterion

Fig. 36: A proclet system discovered by using the existing precedence criterion

Fig. 37: Expenditures created after projects closed

extracted a new event log for the Project artifact enriched with the interaction to the
Expenditures artifact. We now analyzed the Project artifact, the Expenditures artifact
and their interactions; the resulting model is shown in Figure 37.

We found two projects had been created in parallel with the creation of the expen-
ditures indicating that there are expenditures which are created after the two projects
are closed (see Figure 37 (8)). Verifying this observation in the database, we retrieved
that 5 out of the 28 expenditures related to these two projects were indeed created af-
ter the two projects were closed, shown in Figure 38. Two of the five expenditures
are created longer than 24 hours after the closure of the projects; other three expen-
ditures were created on the same day when the project are closed (which may due to
the CLOSED DATE events of the projects only have a ‘date-stamp’). This result again
shows that our approach is able to illustrate true positive unusual flows based on the
recorded data.

Fig. 38: Expenditures created after projects closed in database

In addition, we found the following allowed unusual flows. We have found one
task which is completed before the two related expenditures were ended. Consulting
the Oracle website6, we learned that the expenditures could end in the weekend of the
same week that the task is completed, we verified in the original database that this was
indeed the case; for detail see [51]. Furthermore, we found expenditures that had been
created before the related task was created. To explain this observation, we drilled down
in the data and split the Expenditure artifact schema into 8 different artifact types based
on the expenditure category. The model shown in Figure 39 confirms the assumptions
that each type of expenditure has different event type level interaction with the project
life cycle. For example, the staff expenditures are rather created at the beginning of the
project (see Figure 39 (9)), whereas the others expenditures are created after the project
is definitive (in the system) or after the Update Program event type of the project (see
Figure 39 (10)).

We also found some unusual flows within artifacts and discussed these with the
client. For example, we found that a project is closed (i.e. financially complete) before
the project is completed (i.e. research completed), which might indicate financial risks.
In addition, we found a task was created after the task was completed.

Finally, the understandability of the model was discussed. The client indicated the
process models shown in this paper were very hard to understand without further expla-
nation. Especially, business users were used to static diagrams such as histograms, or
pie charts. But after an interactive session of one hour showing and explaining the pro-
cess models the client, who is an domain-expert on the analyzed process, could clearly

6 http://docs.oracle.com/cd/A60725_05/html/comnls/us/pa/dates06.
htm

http://docs.oracle.com/cd/A60725_05/html/comnls/us/pa/dates06.htm
http://docs.oracle.com/cd/A60725_05/html/comnls/us/pa/dates06.htm

Fig. 39: Interactions between the eight expenditure artifacts and the project life cycle

understand the process model and join in the analysis. A good argument for this claim
is that the client was able to observe the unusual flow from the Closed event type to the
Last Update event type of the project which had not been observed by the authors of
this paper before the interview. The client indicated that the number of cases are also
important to help assess the impact of certain unusual flows.

We conclude this section by summarizing the the results of the two case studies.
For both case studies, we are able to successfully create the desired artifacts and iden-
tify the desired type level interactions. We were able to discover artifact-centric models
using the event logs that were extracted for the artifacts and enriched with interactions.
Moreover, for both case studies, we were able to use the discovered model to iden-
tify true-positive unusual flows validated by ourselves and by client. While we could
achieve our goals, we also noted some limitation. In some cases, domain knowledge
might be required to distinguish the “allowed” unusual flows (e.g. expenditures are al-
lowed to be closed after the related tasks are closed but in the same week) from the
prohibited unusual flows identified.

8 Conclusion

In this paper, we addressed the problem of discovering a process model from event
data stored in a relational data source. We proposed to discover a model that describes
the process as a set of interacting data objects (of the process), each following its own
life-cycle, also called artifacts. For this, we contributed a semi-automatic technique
to identify artifact types in a relational data source, extract a life-cycle log for each
identified type. From each log, a life-cycle model of this artifact can be identified using
existing process discovery techniques. Second, we provide, for the first time, a family
of technique to discover interactions between artifacts at the type level and the event
level. This information can be used to visualize the interactions between the extracted
artifact life-cycle models. We validated our approach in two case studies using real-life
data from ERP systems and showed that the discovered models accurately described
the executions of the recorded business processes. We could show that the discovered
models provide useful insights into the processes and allowed to identify unusual flows
of executions.

Future Research. This paper made a first step towards a fully discovery of artifact-
centric process models from a relational data source. Currently, our approach for dis-
covering artifacts still needs manual steps such as indicating a column for splitting the
artifacts or splitting the event types. More advanced algorithms can be developed to
identify the “perfect” artifact automatically by using, for example, metrics and heuris-
tics. Furthermore, we considered the line level artifacts (e.g. sales order lines) as sep-
arate artifacts in our case study and omitted them from the log extraction. It would be
interesting to investigate the hierarchy of artifacts; for example, supporting the discov-
ery of sub-artifacts (e.g. sales order lines) within artifacts. A limitation of the current
interaction discovery is that it is limited to two artifacts. We would like to discover the
interaction flow between multiple artifacts by merging multiple artifacts for example.

Acknowledgments

We thank B.F. van Dongen and H.M.W. Verbeek for their substantial support in writing
this paper. We also thank W. van Kessel (KPMG) for his substantial support in analyzing
the Oracle case study.

References

1. W. v. d. Aalst, Process Mining: Discovery, Conformance and Enhancement of Business Pro-
cesses. Springer, 2011.

2. M. van Eck, X. Lu, S. Leemans, and W. van der Aalst, “Pm2: a process mining project
methodology,” in CAiSE 2015 (accepted), 2015.

3. M. v. Giessel, “Process Mining in SAP R/3: A method for applying process mining to SAP
R/3,” Master’s thesis, Eindhoven University of Technology, 2004.

4. I. Segers, “Investigating the application of process mining for auditing purposes,” Master’s
thesis, Eindhoven University of Technology, 2007.

5. J. Buijs, “Mapping data sources to xes in a generic way,” Master’s thesis, Eindhoven Univer-
sity of Technology, 2010.

6. D. Piessens, “Event Log Extraction from SAP ECC 6.0,” Master’s thesis, Eindhoven Univer-
sity of Technology, 2011.

7. A. Roest, “A Practitioners Guide Towards Process Mining on ERP Systems - Implemented
and Tested for SAP Order to Cash,” Master’s thesis, Eindhoven University of Technology,
2012.

8. A. Nigam and N. Caswell, “Business artifacts: An approach to operational specification,”
IBM Systems Journal, vol. 42, no. 3, pp. 428–445, 2003.

9. D. Cohn and R. Hull, “Business artifacts: A data-centric approach to modeling business
operations and processes,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 32, no. 3, pp. 3–9, 2009.

10. W. v. d. Aalst, A. Adriansyah, A. d. Medeiros, F. Arcieri, T. Baier, T. Blickle, J. Bose, P. v. d.
Brand, R. Brandtjen, J. Buijs et al., “Process Mining Manifesto,” in Business process man-
agement workshops. Springer, 2012, pp. 169–194.

11. R. Hull, E. Damaggio, R. D. Masellis, F. Fournier, M. Gupta, F. T. Heath, S. Hobson,
M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculn, “Business artifacts with
guard-stage-milestone lifecycles: managing artifact interactions with conditions and events.”
in DEBS, ACM, 2011, pp. 51–62.

12. R. J. Miller and P. Andritsos, “Schema discovery,” IEEE Data Eng. Bull., vol. 26, no. 3, pp.
40–45, 2003. [Online]. Available: http://sites.computer.org/debull/A03sept/toronto.ps

13. J. Turmo, A. Ageno, and N. Català, “Adaptive information extraction,” ACM Comput. Surv.,
vol. 38, no. 2, 2006. [Online]. Available: http://doi.acm.org/10.1145/1132956.1132957

14. S. Sarawagi, “Information extraction,” Foundations and Trends in Databases, vol. 1, no. 3,
pp. 261–377, 2008. [Online]. Available: http://dx.doi.org/10.1561/1900000003

15. V. M. Markowitz and J. A. Makowsky, “Identifying extended entity-relationship object
structures in relational schemas,” IEEE Trans. Software Eng., vol. 16, no. 8, pp. 777–790,
1990. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/32.57618

16. R. H. L. Chiang, T. M. Barron, and V. C. Storey, “Reverse engineering of relational databases:
Extraction of an EER model from a relational database,” Data Knowl. Eng., vol. 12, no. 2,
pp. 107–142, 1994. [Online]. Available: http://dx.doi.org/10.1016/0169-023X(94)90011-6

17. R. Alhajj, “Extracting the extended entity-relationship model from a legacy relational
database,” Inf. Syst., vol. 28, no. 6, pp. 597–618, 2003. [Online]. Available: http:
//dx.doi.org/10.1016/S0306-4379(02)00042-X

http://sites.computer.org/debull/A03sept/toronto.ps
http://doi.acm.org/10.1145/1132956.1132957
http://dx.doi.org/10.1561/1900000003
http://doi.ieeecomputersociety.org/10.1109/32.57618
http://dx.doi.org/10.1016/0169-023X(94)90011-6
http://dx.doi.org/10.1016/S0306-4379(02)00042-X
http://dx.doi.org/10.1016/S0306-4379(02)00042-X

18. E. Nooijen, B. v. Dongen, and D. Fahland, “Automatic Discovery of Data-Centric and
Artifact-Centric Processes,” in Business Process Management Workshops. Springer, 2013,
pp. 316–327.

19. C. Yu and H. V. Jagadish, “Schema summarization,” in Proceedings of the 32nd
International Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006.
ACM, 2006, pp. 319–330. [Online]. Available: http://www.vldb.org/conf/2006/p319-yu.pdf

20. V. Popova, D. Fahland, and M. Dumas, “Artifact lifecycle discovery,” International Journal
of Cooperative Information Systems, World Scientific., 2014 (to appear).

21. J. E. Ingvaldsen and J. A. Gulla, “Preprocessing support for large scale process mining of
sap transactions,” in Business Process Management Workshops. Springer, 2008, pp. 30–41.

22. A. Ramesh, “Process mining in peoplesoft,” Master’s thesis, Eindhoven University of Tech-
nology, 2006.

23. K. Yano, Y. Nomura, and T. Kanai, “A practical approach to automated business process
discovery,” in Enterprise Distributed Object Computing Conference Workshops (EDOCW),
2013 17th IEEE International. IEEE, 2013, pp. 53–62.

24. W. v. d. Aalst, A. Weijters, and L. Maruster, “Workflow mining: Discovering process models
from event logs,” Knowledge and Data Engineering, IEEE Transactions on, vol. 16, no. 9,
pp. 1128–1142, 2004.

25. A. Weijters and J. Ribeiro, “Flexible heuristics miner (fhm),” in Computational Intelligence
and Data Mining (CIDM), 2011 IEEE Symposium on. IEEE, 2011, pp. 310–317.

26. A. d. Medeiros, A. Weijters, and W. v. d. Aalst, “Genetic process mining: an experimental
evaluation,” Data Mining and Knowledge Discovery, vol. 14, no. 2, pp. 245–304, 2007.

27. J. v. d. Werf, B. v. Dongen, C. Hurkens, and A. Serebrenik, “Process discovery using integer
linear programming,” in Applications and Theory of Petri Nets. Springer, 2008, pp. 368–
387.

28. C. Günther and W. v. d. Aalst, “Fuzzy mining–adaptive process simplification based on
multi-perspective metrics,” in Business Process Management. Springer, 2007, pp. 328–
343.

29. S. J. J. Leemans, D. Fahland, and W. M. P. v. d. Aalst, “Discovering block-structured process
models from event logs-a constructive approach,” in Application and Theory of Petri Nets
and Concurrency. Springer, 2013, pp. 311–329.

30. ——, “Discovering block-structured process models from non-conforming event logs,” in
In 9th International Workshop on Business Process Intelligence 2013 (BPI), Beijing, China,
2013.

31. J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A multi-dimensional quality
assessment of state-of-the-art process discovery algorithms using real-life event logs,” Infor-
mation Systems, vol. 37, no. 7, pp. 654–676, 2012.

32. D. Lo and S. Khoo, “Smartic: towards building an accurate, robust and scalable specification
miner,” in Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2006, Portland, Oregon, USA, November 5-11, 2006,
M. Young and P. T. Devanbu, Eds. ACM, 2006, pp. 265–275. [Online]. Available:
http://doi.acm.org/10.1145/1181775.1181808

33. M. Gabel and Z. Su, “Javert: Fully automatic mining of general temporal properties from
dynamic traces,” in Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. SIGSOFT ’08/FSE-16. New York, NY,
USA: ACM, 2008, pp. 339–349. [Online]. Available: http://doi.acm.org/10.1145/1453101.
1453150

34. D. Fahland, D. Lo, and S. Maoz, “Mining branching-time scenarios,” in 2013 28th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2013,
Silicon Valley, CA, USA, November 11-15, 2013, E. Denney, T. Bultan, and A. Zeller, Eds.
IEEE, 2013, pp. 443–453. [Online]. Available: http://dx.doi.org/10.1109/ASE.2013.6693102

http://www.vldb.org/conf/2006/p319-yu.pdf
http://doi.acm.org/10.1145/1181775.1181808
http://doi.acm.org/10.1145/1453101.1453150
http://doi.acm.org/10.1145/1453101.1453150
http://dx.doi.org/10.1109/ASE.2013.6693102

35. M. Pradel and T. Gross, “Automatic generation of object usage specifications from large
method traces,” in Automated Software Engineering, 2009. ASE ’09. 24th IEEE/ACM Inter-
national Conference on, Nov 2009, pp. 371–382.

36. A. Zeller, “Specifications for free,” in NASA Formal Methods - Third International
Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, ser.
Lecture Notes in Computer Science, M. G. Bobaru, K. Havelund, G. J. Holzmann,
and R. Joshi, Eds., vol. 6617. Springer, 2011, pp. 2–12. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-20398-5 2

37. B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke, “A systematic
survey of program comprehension through dynamic analysis,” Software Engineering, IEEE
Transactions on, vol. 35, no. 5, pp. 684–702, Sept 2009.

38. J. Lou, Q. Fu, S. Yang, J. Li, and B. Wu, “Mining program workflow from interleaved
traces,” in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, July 25-28, 2010, B. Rao,
B. Krishnapuram, A. Tomkins, and Q. Yang, Eds. ACM, 2010, pp. 613–622. [Online].
Available: http://doi.acm.org/10.1145/1835804.1835883

39. J. Pinggera, P. Soffer, D. Fahland, M. Weidlich, S. Zugal, B. Weber, H. Reijers,
and J. Mendling, “Styles in business process modeling: an exploration and a
model,” Software & Systems Modeling, pp. 1–26, 2013. [Online]. Available: http:
//dx.doi.org/10.1007/s10270-013-0349-1

40. R. Minelli, A. Mocci, M. Lanza, and L. Baracchi, “Visualizing developer interactions,” in
Software Visualization (VISSOFT), 2014 Second IEEE Working Conference on, Sept 2014,
pp. 147–156.

41. M. Schur, A. Roth, and A. Zeller, “Mining behavior models from enterprise web
applications,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp. 422–432.
[Online]. Available: http://doi.acm.org/10.1145/2491411.2491426

42. D. Fahland, M. d. Leoni, B. v. Dongen, and W. v. d. Aalst, “Behavioral conformance of
artifact-centric process models,” in Business Information Systems. Springer, 2011, pp. 37–
49.

43. ——, “Conformance checking of interacting processes with overlapping instances,” in Busi-
ness Process Management. Springer, 2011, pp. 345–361.

44. E. Nooijen, “Artifact-Centric Process Analysis–Process discovery in ERP systems.” Master’s
thesis, Eindhoven University of Technology, 2012.

45. A. Petermann, M. Junghanns, R. Muller, and E. Rahm, “Biiig: enabling business intelligence
with integrated instance graphs,” in Data Engineering Workshops (ICDEW), 2014 IEEE 30th
International Conference on. IEEE, 2014, pp. 4–11.

46. R. Conforti, M. Dumas, L. Garcı́a-Bañuelos, and M. La Rosa, “Beyond tasks and gate-
ways: Discovering bpmn models with subprocesses, boundary events and activity markers,”
in Business Process Management. Springer, 2014, pp. 101–117.

47. A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage anomalies,” in
Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, ser.
ESEC-FSE ’07. New York, NY, USA: ACM, 2007, pp. 35–44. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287632

48. A. Mocci and M. Sangiorgio, “Detecting component changes at run time with
behavior models,” Computing, vol. 95, no. 3, pp. 191–221, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s00607-012-0214-z

49. A. Silberschatz, H. F. Korth, and S. Sudarshan, Database system concepts. McGraw-Hill
Hightstown, 1997, vol. 4.

http://dx.doi.org/10.1007/978-3-642-20398-5_2
http://doi.acm.org/10.1145/1835804.1835883
http://dx.doi.org/10.1007/s10270-013-0349-1
http://dx.doi.org/10.1007/s10270-013-0349-1
http://doi.acm.org/10.1145/2491411.2491426
http://doi.acm.org/10.1145/1287624.1287632
http://dx.doi.org/10.1007/s00607-012-0214-z

50. J. E. Ingvaldsen and J. A. Gulla, “Preprocessing support for large scale process
mining of SAP transactions,” in Business Process Management Workshops, BPM
2007 International Workshops, BPI, BPD, CBP, ProHealth, RefMod, semantics4ws,
Brisbane, Australia, September 24, 2007, Revised Selected Papers, ser. Lecture Notes
in Computer Science, vol. 4928. Springer, 2007, pp. 30–41. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-78238-4 5

51. X. Lu, “Artifact-Centric Log Extraction and Process Discovery,” Master’s thesis, Eindhoven
University of Technology, 2013.

52. D. Embley and B. Thalheim, Handbook of Conceptual Modeling: Theory, Practice, and
Research Challenges. Springer, 2012.

http://dx.doi.org/10.1007/978-3-540-78238-4_5

	Discovering Interacting Artifacts from ERP Systems (Extended Version)

