
Relational XES: Data Management for Process Mining

B.F. van Dongen and Sh. Shabani

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands.
B.F.v.Dongen, S.Shabaninejad@tue.nl

Abstract. Information systems log data during the execution of business pro-
cesses in so called “event logs”. Process mining aims to improve business pro-
cesses by extracting knowledge from event logs. Currently, the de-facto standard
for storing and managing event data, XES, is tailored towards sequential access
of this data. Handling more and more data in process mining applications is an
important challenge and there is a need for standardized ways of storing and pro-
cessing event data in the large.
In this paper, we first discuss several solutions to address the “big data” problem
in process mining. We present a new framework for dealing with large event logs
using a relational data model which is backwards compatible with XES. This
framework, called Relational XES, provides buffered, random access to events
resulting in a reduction of memory usage and we present experiments with exist-
ing process mining applications to show how this framework trades memory for
CPU time.

1 Introduction

Over the last few years, the amount of historical execution data stored by large-scale
information systems has grown exponentially. This data is typically stored for analysis
purposes, for example to enable auditing, process improvement or process mining. The
evolution of information system into such large-scale systems increases the need for
business process analysis techniques to also handle data at such a large scale.

Most process mining techniques that exist today focus on the analysis of so-called
event logs with the purpose to discover, monitor and improve business processes. Tra-
ditionally, process mining techniques assume that it is possible to sequentially record
events into traces such that each event refers to an activity (i.e., a well-defined step in
the process) and is related to a particular case (i.e., a process instance). Event logs may
store additional information such as the resource (i.e., person or device) executing or
initiating an activity, the timestamp of an event, or data elements recorded with an event
(e.g., the size of an order).

This classic sequential view on a log data has a few important downsides. First, each
event is assumed to be relevant for only one trace in the context of one process. In real
life this is not necessarily the case, i.e. events may be relevant in the context of many
different traces belonging to different processes. Letting an event appear in many traces
requires a significant amount of duplication. Second, the tree structure of an event log
is great for sequential access to the log, but not suitable for random access, while most



2 B.F. van Dongen and Sh. Shabani

techniques actually use a random access paradigm to access events in the log. Third,
the current rise of decomposition and distribution based techniques for process mining
requires easy filtering of event logs both vertically, i.e. distributing cases over different
logs and horizontally, i.e. distributing events over different logs.

In this paper, we present an architecture that addresses the issues above while it
maintains backwards compatibility with existing process mining techniques. Our archi-
tecture uses a database to store the event log, allowing for events to appear in multiple
traces, for events to be accessed in a random-access fashion and for efficient filtering.

The remainder of this paper is structured as follows. In Section 2 we discuss related
work. Then, in Section 3, we present our framework for storing and managing event
data. In Section 4 we compare our framework with the de-facto standard for managing
event data and we conclude the paper in Section 5.

2 Related Work

Process mining is a research discipline that provides techniques to discover, monitor
and improve processes based on event data. It is beyond the scope of this paper to give
a full introduction to process mining, but we refer to [7] for such an overview.

Most process mining techniques today have been assuming that event data is avail-
able in the form of sequential traces of ordered events that are typically ordered in time.
More recently however, process mining researchers have come to realize that events are
typically related to multiple processes being executed in parallel while synchronizing
on some activities [4–6]. Furthermore, research is emerging on the analysis of streams
of events where the notion of a trace is not predefined but may change over time. [1, 3]

Since the start of research on process mining, attempts have been made on stan-
dardizing the way in which event data is to be stored. This has lead to a number of
semi-standards, such as MXML [9] which was a simple XML format for audit trails of
process aware information systems and the recent XES format [10, 11]. The XES for-
mat is supported by both academic tools such as ProM [11] as well as industrial tools
such as Disco [2]. Many real-life datasets have been made public in the XES xml format

OpenXES is a reference implementation for dealing with event data in the XES
format. This reference implementation consists of a number of interfaces as well as a
number of concrete implementations. These interfaces allow for both sequential and
random, read and write access to event data. Over the years, this implementation has
proven to be very successful in the open source process mining framework ProM [11].
Most implementations of OpenXES keep entire logs in memory, while others use inter-
nal databases. However, all implementations use XML as their serialization format.

It is not the first time that databases are used to store event logs. XESAme [11] is a
log-import framework that allows events from other systems to be converted to a XES
file. Internally, this framework uses a temporary database to store event data, but then
this database is not exposed to the user and the contents are always serialized to the
XES XML format.



Relational XES: Data Management for Process Mining 3

3 Relational XES (RXES)

XES is an open standard for storing and managing event data. For the purpose of storing
event data, a standardized, extensible storage format was developed, of which the defi-
nition is shown in Figure 1. In XES, each event, trace and log is annotated with typed or
untyped attributes which are given semantics through so-called extensions. For exam-
ple, the activity an event refers to is stored as a literal attribute with key “concept:name”.
This key is defined in the standard “Concept Extension” [10, 11].

One of the fundamental assumptions of XES is that each event belongs to exactly
one trace and occurred in the context of exactly one log as shown in Figure 1. In practice
however, this is often not the case [4].

Therefore, in this paper, we present the RXES framework that lifts this assumption.
Instead of considering an event to have occurred in the context of a particular trace, we
consider a trace to be a collection of events and a log to be a collection of such traces,
but events may occur in many different traces and traces may appear in multiple logs.
This allows for backwards compatibility with traditional mining techniques that rely on
the “single trace” view, while also allowing for more advanced techniques to consider
multiple views at once without the need for duplicating these events.

In Figure 2 we show an ER diagram for the RXES framework. The framework uses
a scheme to store events in a database that is largely based on the UML class diagram
used for XES but separates the contents of events and traces from their appearance in
traces and logs respectively, thus requiring significantly less data duplication. In the
remainder of this section, we discuss the main differences between XES and RXES.

3.1 Representation of events and traces

In RXES, logs, traces and events are represented by tables with ids. The actual state of
an XTEvent is dependent on values of its attributes (accessed through the XAttributable
class). Similarly, an XTrace is nothing more than an ordered list of events (represented
by the composition) which carries state through its attributes and can only exist in the
context of a log. Therefore, there is no need to have content in the tables representing
traces and events in RXES.

Events occurring in the context of a particular trace are represented by the trace_has_event
table which identifies occurrences of events rather than the events themselves and sim-
ilarly trace occurrences are represented by the log_has_trace table. As events can
appear in multiple traces at different locations and traces can appear in multiple logs at
different locations, we keep an order number indicated by sequence that is specific
to the occurrence of an event in a trace or a trace in a log.

An event appearing in multiple traces can in RXES be represented by a single entry
in the event table, but the schema is flexible enough to allow for duplication of the event
for each occurrence if desired.

3.2 Representation of Attributes

In XES, attributes are represented by a single class XAttribute. Each attribute is
composed of a single key and is typed through one of its subclasses (Boolean, Con-



4 B.F. van Dongen and Sh. Shabani

Fig. 1: UML class diagram of the XES standard [10, 11]

Fig. 2: ER Diagram for RelationalXES



Relational XES: Data Management for Process Mining 5

tainer . . . Timestamp). The XAttribute class may carry attributes itself (i.e. meta-
attributes). In RXES, attributes are separated from values to reduce data duplication and
to enforce uniqueness of an attribute’s type. The latter is technically not a requirement
in XES, but it is considered good practice not to use the same attribute with more types.
To cover meta attributes the attribute table includes a parent child relationship ex-
pressing that attributes have attributes. The values of the meta attributes are stored in the
event has attribute table, hence the definition of a meta attribute that is con-
tained in more than one event attribute with a different value is stored for each value.
This is a design choice to avoid having the relate events occurrences with attributes.

As shown in Figure 1, event logs may contain a number of global attributes. The
notion of global events refers to the idea that a log can specify that a particular attribute
is present on all traces (or events) contained within it, i.e. the attribute is defined to
be globally present. This allows for process mining techniques to verify whether a log
satisfies certain input conditions, such as the presence of timestamps. A global attribute
also specifies a default value which can be used for example when adding new traces or
events to a log or in case an attribute declared to be global is nonetheless not present.
In RXES, we use two binary attribute in the log_has_attribute table to indicate
if an attribute is global. To cover the concept of global attribute it has been enforced by
the schema that there should not be two global attributes in one log with the same key
but a different value.

3.3 Representation of Classifiers and Extensions

Another feature of XES is the availability of so-called classifiers and extensions which
provide semantics to events in a log. A classifier in XES is composed of a collection
of attribute keys. If a classifier is included in a log, it provides insights into the way
individual events should be translated into business activities (or event classes in XES
terms). The idea is that such classifiers provide a starting point for process mining
techniques to reason on the correct level of abstraction. In practice, classifiers are rarely
contained in a log and are often added by the process mining technique. Therefore, in
our database, we represent the attribute keys of classifiers simply by text. As a general
rule, a classifier should only refer to keys of event global attributes, but this is not
enforced by XES nor by RXES.

The last concept of XES that is supported by RXES are the so-called extensions.
The extension mechanism allows users to give semantics to attributes. These extensions
specify specific keys for attributes which have to be interpreted in a standardized way.
For example, the concept extension defined by [10] defines attributes concept:name
of type String which stores a generally understood name for any type hierarchy ele-
ment. [...] e.g. the name of the executed activity represented by the event[10]. In RXES,
extensions are stored in a separate table, and attributes are connected to extensions using
foreign keys.

3.4 Identification of attributes

The attribute table uses auto-generated IDs attached to each attribute to connect at-
tributes of the same type using SQL queries. By using an id as a primary key rather



6 B.F. van Dongen and Sh. Shabani

than other fields, we allow for recognition of identical attributes which is quite useful
for decomposition, filtering and importing. When encountering an attribute that exists
in the whole log, we may add a reference to the existing id in the database using an in-
memory cache of existing attributes. However, if an attribute is not in cache, we add the
attribute using a fresh id. The consolidation of identical attributes can be done offline.

4 Benefits of RelationalXES over OpenXES

RelationalXES provides a full implementation of all OpenXES interfaces using the
database as a backend. As a result the framework is fully backward compatible and
provides a number of benefits over OpenXES. First, keeping events in the database and
only retrieving minimal amounts of data per each request, reduces the memory usage
of process mining techniques significantly. Second, through SQL-based filtering and
database views, decomposition algorithms no longer require event data to be duplicated
in memory, and third, events can exist outside of the context of a trace or a log, allowing
RXES to store event data from streams and to utilize trace identification techniques.

RXES has been implemented in Java ,and for the experiments in this paper, MySQL
has been used as a database system. However, the design of the application allows
for any relational database systems. The framework keeps only the data items that are
directly related to the log entity plus list of ids of traces in the memory and later loads
the actual data if it is necessary, i.e. if it is requested by a process mining technique.
RXES is implemented as a package in the ProM framework and is available as an open-
source implementation. It can be downloaded from http://www.processmining.org/.

Currently OpenXES has multiple implementations included in ProM. In this sec-
tion, we show the difference between our new technique and existing implementations
by evaluating memory and CPU usage of processing different sizes of logs.

To investigate memory and CPU usage we used 30 sample event-logs. For that,
we used a public, real-life dataset [8] as a base. This dataset contains 13,087 traces
with 262,200 events. In total, there are 1,082,719 attributes contained in these events.
To investigate the behavior of the system, we extend the size of this log in different
dimensions, i.e., we increased the number of events and attributes of the base log up
to 10 times . We used a binary search technique to find the least amount of memory
needed to process each event log. The resulting memory use for each log and each
implementation is shown in Figure 3(a) and Figure 3(b).

Clearly, the default OpenXES implementation (using Java’s Collection Framework)
has the highest memory allocation. The existing MapDB implementation (in package
XESLite) drops the usage by 90%, while our technique uses 90% less than that. For
RXES, these results include the memory needed by the Database Management System.

Figures 3(c) and 3(d) show a comparison for the time needed to access all events in
the event logs. To evaluate time, a program that requests all elements of the event log has
been executed 10 times and an average time is computed. The amount of memory given
to the Java virtual machine is sufficient to meet the demands of the Default OpenXES
implementation. Clearly, there is a direct relation between memory usage and speed of
access. As Figure 3(c) shows, the default implementation is the fastest method simply
because the event log is loaded into memory completely. The figures further show that



Relational XES: Data Management for Process Mining 7

0

1,0
00,

000

2,0
00,

000

3,0
00,

000
0

500

1,000

1,500
M

b

(a) Memory use vs. number of events

0

5,0
00,

000

10,
000

,00
00

500

1,000

1,500

(b) Memory use vs. number of attributes

0

1,0
00,

000

2,0
00,

000

3,0
00,

000
0

100

200

number of events

s

(c) CPU time vs. number of events

0

5,0
00,

000

10,
000

,00
00

100

200

number of attributes

(d) CPU time vs. number of attributes

Default OpenXES MapDB XESLite RXES

Fig. 3: Memory and CPU use for accessing all events in a log vs. number of events and
attributed in the log.

RXES is slower than MapDB which uses an in-memory database, which is mostly be-
cause for this experiment we used minimum size of the trace buffer which only keeps
one trace at a time. Hence, the execution time is result of performing many SQL queries
over a TCP/IP connection to the DBMS.

In general, if the size of the event log is small compared to the available memory,
MapDBDisk keeps a good balance between memory and time usage. However, com-
pared to RXES, MapDB doesn’t allow for distribution and replication, while it is vital
in cases of using decomposition and parallelism to handle the big data.

The ability use of RXES to process large event logs with readily available process
mining techniques is essential for the adoption of our framework in practice. However,
our framework is capable of performing tasks directly on the database, such as event
log filtering.

5 Conclusion and Future Work

In this paper, we presented RelationalXES. This framework is a generalization of the
de-facto standard XES for storing and managing event data in process mining. Where
all existing implementations of XES uses the strict notion of containment for events in
traces and traces in logs, our framework is much more flexible and allows for events to
appear in more than one trace and for traces to appear in more than one log. That makes
it possible to have different views on the same event log. Furthermore, the database



8 B.F. van Dongen and Sh. Shabani

schema used in RXES allows for a significant reduction of duplication by storing fre-
quently occurring attributes only once rather than repeating them for every occurrence.

In the paper, we presented the framework in detail and we discuss the underlying
database schema. Furthermore, we show the reduction of memory use by process min-
ing techniques using RXES.

References

[1] Andrea Burattin, Alessandro Sperduti, and Wil M. P. van der Aalst. Heuristics
miners for streaming event data. CoRR, abs/1212.6383, 2012.

[2] Christian W. Günther and Anne Rozinat. Disco: Discover your processes. In
Niels Lohmann and Simon Moser, editors, BPM (Demos), volume 940 of CEUR
Workshop Proceedings, pages 40–44. CEUR-WS.org, 2012.

[3] Fabrizio Maria Maggi, Andrea Burattin, Marta Cimitile, and Alessandro Sperduti.
Online process discovery to detect concept drifts in ltl-based declarative process
models. In Robert Meersman et.al.s, editor, OTM Conferences, volume 8185 of
Lecture Notes in Computer Science, pages 94–111. Springer, 2013. ISBN 978-3-
642-41029-1.

[4] Erik H. J. Nooijen, Boudewijn F. van Dongen, and Dirk Fahland. Automatic dis-
covery of data-centric and artifact-centric processes. In Marcello La Rosa and Pn-
ina Soffer, editors, Business Process Management Workshops, volume 132 of Lec-
ture Notes in Business Information Processing, pages 316–327. Springer, 2012.
ISBN 978-3-642-36284-2.

[5] Viara Popova and Marlon Dumas. Discovering unbounded synchronization con-
ditions in artifact-centric process models. In Niels Lohmann, Minseok Song, and
Petia Wohed, editors, Business Process Management Workshops, volume 171 of
Lecture Notes in Business Information Processing, pages 28–40. Springer, 2013.
ISBN 978-3-319-06256-3.

[6] Viara Popova, Dirk Fahland, and Marlon Dumas. Artifact lifecycle discovery.
CoRR, abs/1303.2554, 2013.

[7] Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011. ISBN 978-3-642-19344-6.

[8] B.F.; van Dongen. Bpi challenge 2012, 2012. URL http://dx.doi.org/
10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

[9] Boudewijn F. van Dongen and Wil M. P. van der Aalst. Emit: A process mining
tool. In Jordi Cortadella and Wolfgang Reisig, editors, ICATPN, volume 3099
of Lecture Notes in Computer Science, pages 454–463. Springer, 2004. ISBN
3-540-22236-7.

[10] H. M. W. Verbeek and Christian W. Günther. XES standard definition 2.0. Tech-
nical report, BPMcenter.org, July 2014. URL http://bpmcenter.org/
wp-content/uploads/reports/2014/BPM-14-09.pdf. BPM Cen-
ter Report BPM-14-09.

[11] H. M. W. Verbeek, Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P.
van der Aalst. XES, XESame, and ProM 6. In Pnina Soffer and Erik Proper,
editors, CAiSE Forum, volume 72 of Lecture Notes in Business Information Pro-
cessing, pages 60–75. Springer, 2010. ISBN 978-3-642-17721-7.

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://bpmcenter.org/wp-content/uploads/reports/2014/BPM-14-09.pdf
http://bpmcenter.org/wp-content/uploads/reports/2014/BPM-14-09.pdf

	Relational XES: Data Management for Process Mining

