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Abstract

As organizations reach higher levels of business process management maturity, they
often find themselves maintaining very large process model repositories, representing
valuable knowledge about their operations. A common practice within these reposito-
ries is to create new process models, or extend existing ones, by copying and merging
fragments from other models. We contend that if these duplicate fragments, a.k.a. ex-
act clones, can be identified and factored out as shared subprocesses, the repository’s
maintainability can be greatly improved. With this purpose in mind, we propose an
indexing structure to support fast detection of clones in process model repositories.
Moreover, we show how this index can be used to efficiently query a process model
repository for fragments. This index, called RPSDAG, is based on a novel combina-
tion of a method for process model decomposition (namely the Refined Process Struc-
ture Tree), with established graph canonization and string matching techniques. We
evaluated the RPSDAG with large process model repositories from industrial practice.
The experiments show that a significant number of non-trivial clones can be efficiently
found in such repositories, and that fragment queries can be handled efficiently.
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1. Introduction

Organizations engaged in long-term business process management programs need
to deal with repositories of hundreds or even thousands of process models, with sizes
ranging from dozens to hundreds of elements per model [1, 2]. For example, the SAP
reference model contains over 600 business process models, while Suncorp, a large
Australian insurer, maintains a repository of over 3,000 process models [3]. Tool ven-
dors nowadays distribute reference model repositories (e.g. the IT Infrastructure Li-
brary — ITIL) with over a thousand process models each. Such models are used to
document and to communicate internal procedures, to guide the development of IT
systems, or to support business improvement projects, among other uses.
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While highly valuable, such collections of process models raise a maintenance chal-
lenge [4]. This challenge is amplified by the fact that process models are generally
maintained and used by stakeholders with varying skills, responsibilities and goals,
sometimes distributed across independent organizational units. One problem that arises
as repositories grow is that of managing overlap across models. In particular, process
model repositories tend to accumulate duplicate fragments over time, as new process
models are created by copying and merging fragments from other models. Experi-
ments conducted during this study have put into evidence a large number of clones
in three process model repositories from industrial practice. This situation is akin to
that observed in source code repositories, where significant amounts of duplicate code
fragments — known as code clones — are accumulated over time [5].

Cloned fragments in process models raise several issues. Firstly, clones make indi-
vidual process models larger than they need to be, thus affecting their comprehensibil-
ity. Secondly, clones are modified independently, sometimes by different stakeholders,
leading to unwanted inconsistencies across models. Finally, process model clones hide
potential efficiency gains. Indeed, by factoring out cloned fragments into separate sub-
processes, and exposing these subprocesses as shared services, companies may reap
the benefits of larger resource pools.

Detecting clones by comparing process models in a pairwise manner — using sub-
graph isomorphism algorithms — would be inefficient in the context of repositories
with hundreds of process models. Accordingly, indexes are needed to speed up the
clone discovery process.

In this setting, this article addresses the problem of retrieving all clones in a process
model repository that can be refactored into shared subprocesses. Specifically, the
contribution of the article is an index structure, namely the RPSDAG, that provides
operations for inserting and deleting models, as well as an operation for retrieving all
clones in a repository that meet the following requirements:

o All retrieved clones must be single-entry, single-exit (SESE) fragments, since

subprocesses are invoked according to a call-and-return semantics.

e All retrieved clones must be exact clones so that every occurrence can be re-
placed by an invocation to a single (shared) subprocess. While identifying ap-
proximate clones could be useful in some scenarios, approximate clones cannot
be directly refactored into shared subprocesses, and thus fall outside the scope
of this study.

e All retrieved clones are maximal, in the sense that each of them has multiple
non-identical enclosing SESE regions. This “maximality” criterion is desirable
because once we have identified a clone, every SESE fragment strictly contained
in this clone is also a clone, but we do not wish to return all such non-maximal
sub-clones.

e Retrieved clones must have at least two nodes (no “trivial” clones).

Identifying clones in a process model repository boils down to identifying frag-
ments of a process model that are isomorphic to other fragments in the same or in
another model. Hence, we need a method for decomposing a process model into frag-
ments and a method for testing isomorphism between these fragments. Accordingly,
the RPSDAG is built on top of two pillars: (i) a method for decomposing a process
model into SESE fragments, namely the Refined Process Structure Tree (RPST) decom-



position; and (ii) a method for calculating canonical codes for labeled graphs. These
canonical codes reduce the problem of testing for graph isomorphism between a pair
of graphs, to a string equality check. These two techniques however need some adap-
tations in order to fit the requirements of the RPSDAG. Firstly the RPST does not
retrieve all possible SESE regions in a model. Some SESE regions are hidden inside
others, like for example sub-sequences hidden inside larger sequences. Secondly, naive
methods for calculating canonical codes for labeled graphs have problems scaling up,
especially when there are multiple nodes with duplicate labels (or unlabeled nodes).
Process models contain “gateways” and gateways are generally not labeled. In this
paper, we propose several optimizations that take advantage of the specific structure of
process models in order to scale up the calculation of canonical codes.

As a byproduct, we show how the RPSDAG can also be used to efficiently answer
“fragment queries”, that is, queries aimed at retrieving all occurrences of a given model
fragment in a repository.

The rest of the paper is structured as follows. Section 2 introduces the concepts of
RPST and canonical code and discusses how they are used to address the problem at
hand. Next, Section 3 describes the RPSDAG, including its insertion and deletion algo-
rithms. This section also shows how the RPSDAG can be used to efficiently retrieve all
occurrences of a given process model fragment in a repository. Section 4 presents an
empirical evaluation of the RPSDAG. Finally, Section 5 discusses related work while
Section 6 draws conclusions.

2. Background

This section introduces the two basic ingredients of the proposed technique: the
Refined Process Structure Tree (RPST) and the code-based graph indexing.

2.1. RPST

The RPST [6] is a parsing technique that takes as input a process model and com-
putes a tree representing a hierarchy of SESE fragments. Each fragment corresponds to
the subgraph induced by a set of edges. A SESE fragment in the tree contains all frag-
ments at the lower level, but fragments at the same level are disjoint. As the partition
is made in terms of edges, a single vertex may be shared by several fragments.

Each SESE fragment in an RPST is of one of four types [7]. A trivial (T) fragment
consists of a single edge. A polygon (P) fragment is a sequence of fragments. A bond
corresponds to a fragment where all child fragments share a common pair of vertices.
Any other fragment is a rigid.

Figure 1(a) presents a sample process model for which the RPST decomposition is
shown in the form of dashed boxes. A simplified view of the RPST is shown in Fig. 2.
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Figure 1: Excerpt of two process models of an insurance company.

We observe that the root fragment corresponds to
polygon P18, which in turn contains rigid R17 and a set
of trivial fragments (simple edges) that are not shown in
order to simplify the figure. R17 is composed of poly-
gons P16, P5, P4, and so forth.

In this setting, every fragment in the RPST is a poten-
tial candidate when identifying clones. Consider the two
models presented in Figure 1, where polygons P1, P2,
P4, PS5, P6, P7 and P14, and bond B3 have been high-
lighted to ease their identification. Out of these we note
that polygon P4 has a size greater than one node and is a
maximal clone (i.e., it is not embedded in a larger clone).

Figure 2: RPST of the process
model in Fig. 1(a).

This is an example of clone that we wish to detect. B3 on the other hand is not a maxi-



mal clone as it is always embedded in P4, whereas PS5 is a trivial clone. Thus, B3 and
P4 are examples of clones we are not interested in detecting. We also observe that the
sequence of tasks [“Determine source of invoice”, “Investigate error”] appears within
polygon P11. This same sequence is identical to polygon P7. Thus, we can say that
this sequence is a sub-polygon shared by P11, B12 and B19. Moreover, we note that
this sequence occurs twice under polygon P11: once before and once after B10. In
this case we will say that there are two sibling occurrences of sub-polygon P7 under
polygon P11. Similarly, B19 is contained in B12, thus B12 is an example of sub-bond.
It should be noted that the RPST per se does not explicitly represent sub-polygons
and sub-bonds because the RPST is designed to capture only maximal polygons and
maximal bonds. Thus, sub-polygons and sub-bonds need to be extracted separately.
Although the models used as examples are encoded in BPMN, the proposed tech-
nique can be applied to other graph-based modeling notations. To achieve this notation-
independence, we adopt the following graph-based representation of process models:

Definition 2.1 (Process Graph). A Process Graph is a labelled connected graph G =
(V, E, 1), where:

e V is the set of vertices.

e F CV x Visthe set of directed edges (e.g. representing control-flow relations).

e [ : V — X" is a labeling function that maps each vertex to a string over alphabet 3.
We distinguish the following special labels: [(v) = “start” and [(v) = “end” are re-
served for start events and end events respectively; [(v) = “xor-split” is used for ver-
tices representing xor-split (exclusive decision) gateways; similarly I(v) = “xor-join”,
l(v) = “and-split” and I(v) = “and-join” represent merge gateways, parallel split gate-
ways and parallel join gateways respectively. For a task node ¢, I(¢) is the label of the
task.

This definition can be extended to capture other types of BPMN elements by in-
troducing additional types of nodes (e.g. a type of node for inclusive gateways, data
objects etc.). Organizational information such as lanes and pools can be captured by
attaching dedicated attributes to each node (e.g. each node could have an attribute in-
dicating the pool and lane to which it belongs) [8]. In this paper, we do not consider
sub-processes, since each sub-process can be indexed separately for the purpose of
clone identification.

2.2. Canonical labeling of graphs

Our approach for graph indexing is an adaptation of the approach proposed in [9].
The adaptations we make relate to two specificities of process models that differentiate
them from the class of graphs considered in [9]: (i) process models are directed graphs;
(i) process models can be decomposed into an RPST.

Following the method in [9], our starting point is a matrix representation of a pro-
cess graph encoding the vertex adjacency and the vertex labels, as defined below.

Definition 2.2 (Augmented Adjacency Matrix of a Process Graph). Let G = (V, E,l) be a
Process Graph, and v = (v1,...,vv|) a total order over the elements of /. The adjacency
matrix of G, denoted as A, is a (0, 1)-matrix such that A; ; = 1 if and only if (vi,v;) € E,
where 4,7 € {1...|V|}. Moreover, let us consider a function h : ¥* — N\ {0, 1} that maps
each vertex label to a unique natural number greater than 1. The Augmented Adjacency Matrix
M of G is defined as: M = diag( h(I(v1)), ..., h(l(vv))) )+ A



Given the augmented adjacency matrix of a process graph (or a SESE fragment
therein), we can compute a string (hereby called a code) by concatenating the con-
tents of each cell in the matrix from left to right and from top to bottom. For illus-
tration, consider graph G in Figure 3(a), which is an abstract view of fragment B3 of
the running example (cf. Figure 1(a)). For convenience, next to each vertex we show
the unique vertex identifier (e.g. v1), the corresponding label (e.g. I(vy) =“A”), and
the numeric value associated with the label (e.g. h(I(v1)) = 2). Assuming the order
v = (v1,v2,vs3,v4) over the set of vertices, the matrix shown in Figure 3(b) is the
adjacency matrix of G. Figure 3(c) is the diagonal matrix built from h(I(v)) whereas
Figure 3(d) shows the augmented adjacency matrix M for graph G. It is now clear
why 0 and 1 are not part of the codomain of function h, i.e. to avoid clashes with the
representation of vertex adjacency. Figure 3(e) shows a possible permutation of M
when considering the alternative order v’ = (v1, v4, v2, v3) over the set of vertices.
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Figure 3: (a) a sample graph, (b) its adjacency matrix, (c) its diagonal matrix with the vertex label codes, (d)
its augmented adjacency matrix, and (e) a permutation of the augmented matrix

Next, we transform the augmented adjacency matrix into a code by scanning from
left-to-right and top-to-bottom. For instance, the matrix in Figure 3(d) can be repre-
sented as “2.1.1.0.0.3.0.1.0.0.4.1.0.0.0.5”. This code however does not uniquely rep-
resent the graph. If we chose a different ordering of the vertices, we would obtain a
different code. To obtain a unique code (called canonical code), we need to pick the
code that lexicographically “precedes” all other codes that can be constructed from an
augmented adjacency matrix representation of the graph. Conceptually, this means that
we have to consider all possible permutations of the set of vertices and compute a code
for each permutation, as captured in the following definition.

Definition 2.3 (Graph Canonical Code). Let G be a process graph, M the augmented adja-
cency matrix of G. The Graph Canonical Code is the smallest lexicographical string represen-
tation of any possible permutation of matrix M, that is:

code(M) = st((PTMP)|P e IA YQ € IL, P # Q : str(PTMP) < st(QT M Q)

where:
o Il is the set of all possible permutations of the identity matrix Iz
o str(IN) is a function that maps a matrix N into a string representation.

Consider the matrices in Figures 3(d) and 3(e). The code of the matrix in Fig-
ure 3(e) is “2.0.1.1.0.5.0.0.0.1.3.0.0.1.0.4”. This code is lexicographically smaller than
the code of the matrix in Figure 3(d) (“2.1.1.0.0.3.0.1.0.0.4.1.0.0.0.5”). If we explored
all vertex permutations and constructed the corresponding matrices, we would find that
“2.0.1.1.0.5.0.0.0.1.3.0.0.1.0.4” is the canonical code of the graph in Figure 3(a).



Enumerating all vertex permutations is unscalable (factorial on the number of ver-
tices). Fortunately, optimizations can be applied by leveraging the characteristics of
the graphs at hand. Firstly, by exploiting the nature of the fragments in an RPST, we
can apply the following optimizations:

e The code of a polygon is computed in linear time by concatenating the codes of

its contained vertices in the (total) order implied by the control-flow.

e The code of a bond is computed in linear time by taking the entry gateway as
the first vertex, the exit gateway as the last vertex, and all vertices in-between in
lexicographic order based on their labels. Since these vertices in-between do not
have any control-flow dependencies among them, duplicate labels do not pose a
problem.

In the case of a rigid, we start by partitioning its vertices into two subsets: vertices
with distinct labels, and vertices with duplicate labels. Vertices with distinct labels
are deterministically ordered in lexicographic order. Hence we do not need to explore
any permutations between these vertices. Instead, we can focus on deterministically
ordering vertices with duplicate labels. Duplicate labels in process models arise in two
cases: (i) there are multiple tasks (or events) with the same label; (ii) there are multiple
gateways of the same type (e.g. multiple “xor-splits”) that cannot be distinguished from
one another since gateways generally do not have labels. To distinguish between multi-
ple gateways, we pre-process each gateway g by computing the tasks that immediately
precede it and the tasks that immediately follow it within the same rigid fragment, and
in doing so, we skip other gateways found between gateway g and each of its preceding
(or succeeding) tasks. We then concatenate the labels of the preceding tasks (in lexi-
cographic order) and the labels of the succeeding tasks (again in lexicographic order)
to derive a new label s4. The s, labels derived in this way are used to order multiple
gateways of the same type within the same rigid. Consider for example g; and g5 in
Figure 1a and let s1 = “Determine if invoice has already been paid”, s2="Determine
whether invoice received is for proof of ownership” and s3="Determine whether In-
surer authorized work”. We have that s,, = “s1.s2” while s, = “s1.53.52”. Since s3
precedes s2, gateway go will always be placed before g; when constructing an aug-
mented adjacency matrix for R17. In other words, we do not need to explore any
permutation where g; comes before go. Even if task “Determine if invoice is dupli-
cate” precedes g, this is not used to compute s4, because this task is outside rigid R17.
To ensure unicity, vertices located outside a rigid should not be used to compute its
canonical code.

A similar approach is used to order tasks with duplicate labels within a rigid. This
“label propagation” approach allows us to considerably reduce the number of permu-
tations we need to explore. Indeed, we only need to explore permutations between
multiple vertices if they have identical labels and they are preceded and followed by
vertices that also have the same labels. The worst-case complexity for computing the
canonical code is still factorial, but on the size of the largest group of vertices inside a
rigid that have identical labels and identical predecessors and successors’ labels.



3. Clone Detection Method

This section introduces the RPSDAG, including its underlying data structure, in-
sertion and deletion algorithms and its support for “all-clone queries” and “fragment
queries”.

3.1. Index structure and clone detection

The RPSDAG is a directed acyclic graph representing the union of the RPSTs of
a collection of process models. The key feature of the RPSDAG is that each SESE
fragment is represented only once, even if it appears multiple times in the RPST of a
given process model or across multiple RPSTs. When a new process model is inserted
into an RPSDAG, its RPST is computed and traversed bottom-up. For each fragment,
it is checked if this fragment already exists in the RPSDAG. If it does, the fragment
is not inserted, but instead, the existing fragment is reused. For instance, consider an
RPSDAG constructed from the process model shown in Figure l1a. Imagine that the
process model in Figure 1b is inserted into this RPSDAG, meaning that the fragments
in its RPST are inserted into the RPSDAG one by one from bottom to top. When
the RPST node corresponding to polygon P4 is reached, we detect that this fragment
already exists. Rather than inserting the fragment, an edge is created from its parent
fragment (R23) to the existing node P4.

The RPSDAG is designed to be implemented on top of standard relational
databases. Specifically, all the data required by the RPSDAG is stored in three ta-
bles: Codes(Code, Id, Size, Type), Roots(Graphld, Rootld) and RPSDAG(Parentld,
Childld, Weight).

Table Codes contains the canonical code for each RPST fragment of an indexed
graph. Column “Id” assigns a unique identifier to each indexed fragment, column Code
gives the canonical code of a fragment, column Size is the number of vertices in the
fragment, and column Type denotes the type of fragment (“p” for polygon, “r” for rigid
and “b” for bond, plus the special types “sp” for sub-polygon and “sb” for sub-bond
which are discussed later). The “Id” is auto-generated by incrementing a counter every
time that a new code is inserted into the Codes table. Strictly speaking, the “Id” is re-
dundant given that the code uniquely identifies each fragment. However, this “Id” gives
us a shorter way of uniquely identifying a fragment. For optimization reasons, when
the canonical code of a new RPST node is constructed, we use the short identifiers of its
child fragments as labels in the diagonal of the augmented adjacency matrix, instead
of using the child fragment’s canonical codes, which are much longer. For example
fragment P13 in Figure la. contains two child fragments: node “Determine whether
tax invoice is valid” and bond BI2. Instead of using the label “Determine whether tax
invoice is valid” and the canonical code of B12 to compute the canonical code of P13,
we attach a short numerical identifier to label “Determine whether tax invoice is valid”
and we reuse the short identifier of B12 when constructing the canonical code of P13.
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the RPSDAG table
represents a Directed
Acyclic Graph (DAG) rather than a tree. Each tuple of this table consists of a parent
fragment Id, a child fragment Id and a Weight representing the number of occurrences
of the fragment identified by the child Id within the fragment identified by the parent
Id. Figure 4 shows an extract of the tables representing the two graphs in Figure 1.
Here,s the fragment Ids have been derived from the fragment names in the Figure (e.g.
the Id for P4 is 4) and the codes have been hidden for the sake of readability.

Looking at the RPSDAG, we can immediately observe that the maximal clones
are those child fragments whose sum of weights is greater than one. This means that
they occur more than once, either in different parents or within the same parent. For
example, P4 occurs within R17 and R23. Accordingly, we can retrieve all clones in an
RPSDAG by means of the following SQL query.

SELECT RPSDAG. Childld , Codes.Size , SUM(RPSDAG. Weight)
FROM RPSDAG, Codes
WHERE RPSDAG. Childld = Codes.Id AND Codes. Size >= 2

GROUP BY RPSDAG. Childld, Codes. Size
HAVING SUM(RPSDAG. Weight) >= 2;

Figure 4: RPSDAG schema for the process models in Fig. 1.

This query retrieves the Id, size and number of occurrences of fragments that have
at least two parent fragments. We observe that if a fragment appears multiple times
in the indexed graphs, but always under the same parent fragment, it is not a maximal
clone. For example, fragment P2 in Figure 1 always appears under B3, and B3 always
appears under P4. Thus, neither P2 nor B3 are maximal clones, and the above query
does not retrieve them. On the other hand, the query identifies P4 as a maximal clone
since it has two parents (cf. tuples (17,4,1) and (23,4,1) in table RPSDAG in Fig. 4).

Also, as per the requirements spelled out in Section 1, the query returns only frag-
ments with at least 2 nodes. This is because we are interested in identifying clones that
can be refactored into separate subprocesses and is not worth replacing single nodes
with subprocesses. For example, even if there are two tuples with child Id 5 in the
example RPSDAG of Fig. 4, the query will not return clone P5 as it has a single node.



3.2. Insertion

Algorithm 1 describes the procedure for inserting a new process graph into an in-
dexed repository. Given an input graph, the algorithm first computes its RPST with
function ComputeRPST() which returns the RPST’s root node. Next, procedure In-
sertFragment is invoked on the root node to update tables Codes and RPSDAG. This
returns the id of the root fragment. Finally, a tuple is added to table Roots with the id
of the inserted graph and that of its root node.

Algorithm 1: Insert Graph

procedure Insert Graph(Graph m)
RPST root < ComputeRPST(m)
rid <= InsertFragment(root)
Roots < Roots U {(Newld(),rid)} // Newld() generates a fresh id

Algorithm 2: Insert Fragment

procedure InsertFragment(RPST f) returns RPSDAGNodeld
{RPST,RPSDAGNodeld} C <« &
foreach RPST child in GetChildren(f) do
| C <« CU{(child, InsertFragment(child))}
code <= ComputeCode(f, C)
(id, type) = InsertNode(code, f)
foreach (cf, cid) in C do
weight = GetWeight (id, cid)
L RPSDAG < RPSDAG\{(id, cid, weight)} U{(id, cid, weight + 1)}
if type =“p” then InsertSubPolygons(id, code, f)
else if type =“b” then InsertSubBonds(id, code, f)
return id

Procedure InsertFragment (Algorithm 2) inserts an RPST fragment in table RPS-
DAG. This algorithm performs a depth-first search traversal of the RPST. Nodes are
visited in postorder, i.e. a node is visited after all its children have been visited. When
a node is visited, its canonical code is computed — function ComputeCode — based
on the topology of the RPST fragment and the codes of its children (except of course
for leaf nodes whose labels are their canonical codes). Next, procedure InsertNode is
invoked to insert the node in table Codes, returning its id and type. This procedure
(Algorithm 3) first checks if the node already exists in Codes via function GetldSize-
Type(). If it exists, GetldSizeType() returns the id, size and type associated with that
code, otherwise it returns the tuple (0,0,). In this latter case, a fresh id is created
for the node at hand, then its size and type are computed via functions ComputeSize
and ComputeType, and a new tuple is added in table Codes. Function ComputeSize
returns the sum of the sizes of all child nodes or 1 if the current node is a leaf. Once
the node id and type have been retrieved, procedure InsertFragment adds a new tuple in
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table RPSDAG for each children of the visited node if that tuple did not already exist,
otherwise it increases its weight.

Algorithm 3: Insert Node

procedure InsertNode(String code, RPST f) returns
(RPSDAGNodeld, String)
(id, size, type) <= GetldSizeType(code)
if (id, size, type) = (0,0,“”) then
id <= Newld()
size <= ComputeSize(code)
type <= ComputeType(f)
Codes <= Codes U {(code, id, size, type) }
return (id,type)

Algorithm 4: Insert SubPolygons
procedure InsertSubPolygons(RPSDAGNodeld id, String code, RPST f)

foreach (zcode, zid, zsize, ztype) in Codes such that ztype =“p” V “sp”
and zid # id do
{String} LCS < ComputeLCS(code, zcode)
foreach [code in LC'S do
(lid, ltype) = InsertSubNode(lcode, f)
if lid # id then RPSDAG < RPSDAG U {(id,lid, 1)}
if lid # zid then RPSDAG < RPSDAG U {(zid,lid, 1)}
foreach sid in GetChildrenlds(lid) do
RPSDAG <=
RPSDAG \ {(id, sid, 1), (zid, sid, 1)} U {(lid, sid, 1)}

InsertSubPolygons(lid, lcode)

If the visited node is a polygon, procedure InsertSubPolygons is invoked at the
end of InsertFragment. Procedure InsertSubPolygons is used to identify common sub-
polygons and to factor them out as separate nodes in the RPSDAG. Let us consider
again the example in Figure 1. As mentioned in Section 2, the sequence of activities
[“Determine source of invoice”, “Investigate error”] — which is identical to polygon P7
— occurs inside P11: once before and once after B10. These occurrences should be
recognized as occurrences of polygon P7. Hence, P7 is a sub-polygon shared by poly-
gons P11, B12 and B19. Procedure InsertSubPolygons identifies such sub-polygons
and materializes them as explicit nodes in the RPSDAG. This explains the presence of
tuple (11,7,2) in the RPSDAG of Figure 4.

To see how sub-polygons are created, let us consider the two polygons P; and P, in
Fig. 5, where code(P;) = By.a.Bj.w.z.a.B;.c and code(P,) = a.Bj.c.d.a.By.w.z.
These two polygons share bond B; as common child, while bond B, is a child of
P; only. However, at a closer look, their canonical codes share three Longest Com-
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K ) ""

RPSDAG
Py P2 Py P, Py
Insert Insert P; B
B, B, Fragment(P,) B, B, SubPolygons(P;) Insert
LCS(P2,P1)={P3,P4,Ps} B, ﬁ SubPolygons(P3)
LCS(P3,P2)={P4}
P> Py P2 Pq
j B; j B;
Insert Insert
SubPolygons(P,) SubPolygons(P3)
LCS(P2,P1)={Ps} Py LCS(P3,P1)={P4}
(continues) (continues)
B ; B4

Figure 5: Two sub-polygons and the corresponding RPSDAG.

mon Substrings (LCS), namely a.B;.c, a.B; and w.z.! These common substrings

represent common sub-polygons, and thus clones that may be refactored as separate
subprocesses.

Assume P is already stored in the RPSDAG with children B; and B, (first graph
in Fig. 5) and we now want to store P,. We invoke procedure InsertFragment(F)
and add a new node in the RPSDAG, with B; as a child (second graph in Fig. 5).
Since P, is a polygon, we also need to invoke InsertSubPolygons(/). This procedure
(Algorithm 4) retrieves all polygons from Codes that are different than P, (in our case
there is only P;). Then, for each such polygon, it computes all the non-trivial LCSs
between its code and the code of the polygon being inserted. This is performed by
function ComputeLCS() that returns an ordered list of LCSs starting from the longest
one. In the example at hand, the longest substring is a. B .c. This substring can be seen
as the canonical code of a “shared” sub-polygon between P and P;. To capture the fact
that this shared sub-polygon is a clone, we insert a new node Ps in the RPSDAG with
canonical code a.Bj.c (unless such a node already exists, in which case we reuse the
existing node) and we insert an edge from P; to P5 and from P, to Ps. We also add a
new tuple for Ps in Codes and set its type to “sp” to keep track of sub-polygons (needed
when removing a model from the repository — see Algorithm 5). If the node already
exists, we change its type to “sp” in Codes. This is done by function InsertSubNode()
which is similar to InsertNode() with the only difference that it sets the type of the new
node to “sp”, while if the node exists it changes its type to “sp”.

In order to avoid redundancy in the RPSDAG, the new node P5 then “adopts” all
the common children that it shares with P» and with P;. These nodes are retrieved by
function GetChildrenlds(), which simply returns the ids of all child nodes of Ps: these

IAn LCS of strings S1 and S2 is a substring of both S1 and Sz, which is not contained in any other
substring shared by S and S2. LCSs of size one are not considered for obvious reasons. LCSs can efficiently
be identified using a suffix tree [10], see e.g. [11] for a survey of LCS algorithms

12



will either be children of Py or P, or both.? In our example, there is only one common
child, namely B;, which is adopted by P (see third graph in Fig. 5).

It is possible that the newly inserted node also shares sub-polygons with other nodes
in the RPSDAG. So, before continuing to handle the remaining LCSs between P, and
P,, we invoke procedure InsertSubPolygons recursively over P;. In our example, the
code of P5 shares the substring a.B; with both P, and P, (after excluding the code of
P5 from the codes of P, and P; since Pj is already a child of these two nodes). Thus
we create a new node P, with code a.B; as a child of P3 and P, and we make P,
adopt the common child B; (see fourth graph in Fig. 5). We repeat the same operation
between Ps; and P, but since this time Py already exists in the RPSDAG, we simply
remove the edge between P; and B, and add an edge between P; and P; (fifth graph
in Fig. 5). Then, we resume the execution of InsertSubPolygons(P,) and move to
the second LCS between P; and P, i.e. a.B;. Since this substring has already been
inserted into the RPSDAG as node Py, nothing is done. This process of searching for
LCSs is repeated until no more non-trivial common substrings can be identified. In
the example at hand, we also add sub-polygon w.z between P; and P, (last graph in
Fig. 5). At this point, we have identified and factored out all maximal sub-polygons
shared by P; and P, and we can repeat the above process for other polygons in the
RPSDAG whose canonical code shares a common substring with that of P;.

Sometimes there may be multiple overlapping LCSs of the same size. For example,
given the codes of two polygons a.b.c.d.e.f.a.b.c and a.b.c.k.b.c.d, if we extract one
substring (say a.b.c), we can no longer extract the second one (b.c.d). In these cases we
locally choose one of the overlapping LCS based on the number of occurrences of an
LCS within the two strings in question. If they have the same number of occurrences,
we randomly choose one. In the example above, a.b.c has the same size of b.c.d but it
occurs 3 times, so we pick a.b.c and extract the corresponding sub-polygon.

Procedure InsertSubPolygons also handles the cases where the polygon to be in-
serted is a sub-polygon or super-polygon of an existing polygon. These are just special
cases of shared sub-polygon detection.

Coming back to Algorithm 2, if the node to be added is a bond, procedure In-
sertSubBonds is called in order to identify common sub-bonds and factor them out as
separate nodes. Take for example bond B19 in Fig. 1b. This bond is actually a sub-
bond of B12 in Fig. la, since B12 contains B19 plus P11. Thus we want to add a
parent-child relation from B12 to B19 in the RPSDAG, and change the type of B19 in
Codes to “sb” (sub-bond).

Procedure InsertSubBonds is similar to InsertSubPolygons, except that instead
of detecting sub-polygons using ComputeLCS, we detect sub-bonds. Detecting sub-
bonds is simpler than detecting sub-polygons. Since the order of the children within
a bond is irrelevant, we simply need to compute the intersection between the children
of the bond being inserted and the set of children of each indexed bond. If the size
of this intersection is greater than one, it means that the bond being inserted shares a
sub-bond with an already indexed bond. Naturally, we only compare the bond being
inserted with an indexed bond if they have the same types of split and join behavior.

2They are children of one of the two polygons only, if the other polygon is a sub-polygon of the former.
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For example, it does not make sense to find a sub-bond shared between a bond that has
XOR-splits at its ends, and a bond that has AND-splits at its end.

If we find that the intersection between the bond being inserted B and an already
indexed bond B’ contains at least two nodes® we have effectively found a sub-bond S B
consisting of the children shared between B and B’. If sub-bond S B overlaps with any
sub-bond already indexed under B’, then we do not insert it because we are not inter-
ested in retrieving overlapping clones — if we did, one of the two overlapping clones
could not be extracted as a shared sub-process because the other clone would already
contain some of its elements. If on the other hand there is no overlap between S B and
any of the existing sub-bonds under B’, we insert SB under B’. The mechanism to
insert sub-bond SB is the same as for sub-polygons, i.e. a new node is created in the
RPSDAG capturing the shared sub-bond. Given that procedure InsertSubBonds is very
similar to InsertSubPolygons, we do not show its pseudo-code.

Sometimes, a fragment may be contained multiple times in the same parent frag-
ment, like for example sub-polygon P7 which is contained twice within P11 in Figure 1.
These sibling clones are captured by attribute “Weight” to each edge of the RPSDAG,
representing the number of times a child node occurs inside a given parent node. A
Weight greater than 1 indicates a case of sibling clones. Our implementation of the
RPSDAG does not store the attribute Weight for every edge in the RPSDAG but only
for edges that have a weight of at least two. This optimization is achieved by separat-
ing the RPSDAG table into two tables: one containing edges with a weight of one and
another for edges with a weight greater than one. The rationale is that only a small frac-
tion of edges have a weight greater than one. This is purely an implementation-level
optimization. At the conceptual level, we view the RPSDAG table as a single table.

3.3. Deletion

Algorithm 5 shows the procedure for deleting a graph from an indexed repository.
This procedure relies on another procedure for deleting a fragment, namely Delete-
Fragment (Algorithm 6). The DeleteFragment procedure performs a depth-first search
traversal of the RPSDAG s visiting the nodes in post-order. Nodes with at most one
parent are deleted, because they correspond to fragments that appear only in the deleted
graph. Deleting a node entails deleting the corresponding ok in table Codes and delet-
ing all tuples in the RPSDAG table where the deleted node corresponds to the parent
Id. If a fragment has two or more parents, the traversal stops along that branch since
this node and its descendants must remain in the RPSDAG. After invoking procedure
DeleteFragment, the graph itself is deleted from table Roots through its root Id.

Before completing the DeleteGraph procedure, procedure CleanRPSDAG is trig-
gered (see Algorithm 7). This procedure cleans up the RPSDAG by removing those
sub-fragments (i.e. sub-polygons and sub-bonds) which have been added with proce-
dures InsertSubPolygons and InsertSubBonds but that are now left with a single parent
as part of executing DeleteGraph. There is no reason to keep these sub-fragments in
the RPSDAG since they may prevent the identification of further sub-fragments within

3 A fragment of type bond contains at least two children, so we are interested in intersections that contain
at least two nodes.
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Algorithm 5: Delete Graph

procedure DeleteGraph(Graphld mid)
RPSDAGNodeld rid < GetRoot(mid)
DeleteFragment(rid)

Roots <= Roots \ {(mid, rid)}
CleanRPSDAG()

Algorithm 6: Delete Fragment

procedure DeleteFragment(RPSDAGNodeld fid)
if |{(pid, cid, weight) € RPSDAG : cid = fid}| <1 then
foreach (pid, cid, weight) in RPSDAG where pid = fid do
L DeleteFragment(cid)

RPSDAG < RPSDAG \ {(pid, cid, weight)}
Codes <= {(code, id, size, type) € Codes : id # fid}

their parents, as new nodes are inserted into the RPSDAG. For example, let us consider
the RPSDAG that we created from the two models in Fig. 1. As pointed out before,
this RPSDAG contains an edge between B12 and B19 (the latter being a sub-bond of
the former). Now, let us assume we remove the model in Fig. 1b from our repository.
Since B19 has two parents, namely B12 in model a and P20 in model b, B19 is not
deleted by procedure DeleteGraph. However, this node was a sub-fragment which is
now left with a single parent of the same type (i.e. a bond). Thus, we also need to
remove this sub-fragment from the RPSDAG. In doing so, we let its only parent adopt
this node’s children, P6 and P7 in our example. In other words, we revert the effects
of the adoption that we did when creating a sub-polygon or sub-bond. After this oper-
ation, B12 has again its three original children: P6, P7 and P11. Any combination of
these children may later be used to create new sub-fragments as new nodes are inserted

Algorithm 7: Clean RPSDAG

procedure CleanRPSDAG()
foreach (pid, cid, weight) in RPSDAG where GetType(cid) € {“sp”,
“sb”} and {(pidz, cid, weighty) € RPSDAG : pids # pid} = @ do
if GetType(cid) = GetType(pid) then
foreach ccid € GetChildrenlds(cid) do
L weight = GetWeight(cid, ccid)

RPSDAG «=
RPSDAG \ {(cid, ccid, weight)} U {(pid, ccid, weight)}

else
| RestoreType(cid)
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into the RPSDAG.

There is also another case which requires cleaning. If a sub-fragment is left with
a single parent after DeleteGraph, but the parent’s type is different than that of the
sub-fragment, it means this sub-fragment corresponds to an original polygon (bond)
which has been retyped as a sub-polygon (sub-bond) after procedure InsertSubPolygon
(InsertSubBond). In this case CleanRSPDAG invokes function RestoreType() to restore
the original type of this fragment (e.g. if the type is “sp” it is changed to “p”’). Consider
again the example of B19 and now assume we remove the model in Fig. 1a from our
repository. After this, B19 is left with one parent only, namely P20 which is a polygon.
Thus, B19’s type is changed back to “b”.

3.4. Complexity

The deletion algorithm performs a depth-first search, which is linear on the size of
the graph being deleted. Similarly, the insertion algorithm traverses the inserted graph
in linear time. Then, for each fragment to be inserted, it computes its code. Computing
the code is linear on the size of the fragment for bonds and polygons, while for rigids
it is factorial on the largest number of vertices inside the rigid that share identical
labels, as discussed in Section 2.2.* If the fragment is a polygon, we compute all LCSs
between this polygon and all other polygons in the RPSDAG. Using a suffix tree, this
operation is linear on the sum of the lengths of all polygons’ canonical codes. If the
fragment is a bond, we compute all non-empty intersections between the children of
this bond and those of all other bonds. Using a hash table, this operation is linear on
the sum of the number of children of all bonds.

3.5. Correctness and completeness

The correctness of the proposed method for clone detection follows from the fol-
lowing observations:

e A node in the RPSDAG corresponds either to a node in the RPST of an indexed
model, or to a sub-polygon or a sub-bond.

e The RPST decomposition separates the input process graph into SESE fragments
that are either disjoint or have a containment relationship.

e Sub-polygons and sub-bonds are SESE fragments and the insertion algorithm
ensures that the sub-polygons (resp. sub-bonds) that appear under a given poly-
gon (bond) are disjoint and are contained by their parent node in the RPSDAG
(i.e. the parent polygon or bond).

These observations imply that every node in the RPSDAG is a SESE fragment and
that every pair of model fragments indexed in the RPSDAG are either disjoint or in
a containment relation. Moreover, we only detect maximal clones, meaning that if a
clone C is contained in a clone C”, then C’ is not returned as a clone. Hence, the set of
identified clones are disjoint SESE fragments.

4A tighter complexity bound for this problem is given in [12].
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The completeness of the proposed method for clone detection stems from the fol-
lowing observations:

e The RPST decomposition can be constructed for any process model [7].°

e The RPST decomposition contains one node per SESE subgraph in the original
graph, except for SESE subgraphs of type polygon that are directly contained in-
side another polygon (i.e. sub-polygons) and SESE regions of type bond directly
contained inside another bond (i.e. sub-bonds). The RPSDAG then extracts
these sub-polygons and sub-bonds when it is detected that two indexed polygons
(bonds) share a common sub-polygon (sub-bond). Sub-polygons are detected
using a longest common substring algorithm, thus ensuring that maximal-sized
shared sub-polygons are identified.

3.6. Fragment query

The proposed index can also be used to identify all graphs in a repository that con-
tain a query graph. By building the RPSDAG first, we can perform this operation effi-
ciently as opposed to using subgraph isomorphism check, which is NP-complete [13].
In other words, we shift the bulk of the computational complexity from run-time (query
execution) to design-time (repository creation).

Algorithm 8: Fragment Query

procedure FragmentQuery (RPSDAGNodeld id) returns
{RPSDAGNodeld, RPSDAGNodeld}
{RPSDAGNodeld, RPSDAGNodeld} MP < &
foreach (pid, cid, weight) in RPSDAG where cid = id do
R < GetRootlds(pid)
foreach rid in R do
| MP < MP U {(GetGraphld(rid), pid)}

if M P = o then
| MP < {(GetGraphld(id), id)}
return MP

The execution of a query (cf. Algorithm 8) takes a fragment id as input, and returns
the id of all models the query fragment occurs in, and for each model, also the id of
the parent fragment containing the query fragment. In this way we can locate the query
fragment exactly within each model satisfying the query. To do so, we first retrieve the
root fragment id of all graphs containing the input fragment by traversing the RPSDAG
upwards from the input fragment (function GetRootlds()). Then for each root id we
retrieve the corresponding model id from table Roots using function GetGraphld(),
which returns 0 if the graph does not exist. Algorithm 8 assumes the id of the query
fragment is known. Otherwise, we can retrieve it from table Codes.

SSpecifically, [7] shows that an RPST can be constructed for any arbitrary directed graph such that every
node is on a path from a source node to a sink node, which is a basic property of process models.
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Algorithm 9: GetRootlds

procedure GetRootIds(RPSDAGNodeld id) returns {RPSDAGNodeld}
{RPSDAGNodeld} R < &
foreach (pid, cid, weight) in RPSDAG where cid = id do
| R <= RU GetRootIds(pid)
if R = < then
| R<{id}
return

4. Evaluation

This section reports on a series of tests to evaluate the performance of the RPSDAG
as well as the usefulness of clone detection in practical settings.

4.1. Evaluation dataset
We evaluated the RPSDAG using four datasets:

e The collection of SAP R3 reference process models [14]

e A model repository obtained from Suncorp, Australia’s largest insurance com-
pany.

e Two collections from the IBM BIT process library [15], namely collections A
and B3. In the BIT process library there are 5 collections (A, B1, B2, B3 and C).
We excluded collections B1 and B2 because they are earlier versions of B3, and
collection C because it is a mix of models from different sources and as such it
does not contain any clones.

The SAP repository contains 595 models with sizes ranging from 5 to 119 nodes
(average 22.28, median 17). The insurance repository contains 363 models ranging
from 4 to 461 nodes (average 27.12, median 19). The BIT collection A contains 269
models ranging from 5 to 47 nodes (average 17.01, median 16) while collection B3
contains 247 models with 5 to 42 nodes (average 12.94, median 11). The examples
in Figure 1 are extracts of the insurance models with node labels altered to protect
confidentiality.

4.2. Performance evaluation.

We first evaluated the insertion times. Obviously inserting a new model into a
nearly-empty RPSDAG is less costly than doing so in an already populated one. To
factor out this effect, we randomly split each dataset as follows: One third of the mod-
els were used to construct an initial RPSDAG and the other two-thirds were used to
measure insertion times. In the SAP repository, 200 models were used to construct an
initial RPSDAG. Constructing the initial RPSDAG took 26s. In the insurance com-
pany repository, the initial RPSDAG contained 121 models and its construction took
26s. For the BIT collections A and B3, 90 and 82 models respectively were used for
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constructing the initial RPSDAG. Constructing the initial RPSDAGs took 8.6s for col-
lection A and 6.1s for collection B3. All tests were conducted on a PC with a dual core
Intel processor, 1.8 GHz, 4 GB memory, running Microsoft Windows 7 and Oracle Java
Virtual Machine v1.6. The RPSDAG was implemented as a Java console application
on top of MySQL 5.1. Each test was run 10 times and the execution times obtained
across the ten runs were averaged.

Table 1 summarizes the insertion time per model for each collection (min, max,
avg., std. dev., and 90th percentile). All values are in milliseconds. These statistics
are given for three cases: without sub-polygon nor sub-bond clone detection, with sub-
polygon clone detection, and with both sub-polygon and sub-bond clone detection.
Herewith, we use the term sub-fragment clone detection to refer to both sub-polygon
and sub-bond clone detection collectively.

We observe that the average insertion time per model is 3-5 times larger when sub-
polygon is performed. This overhead comes from the step where we compare a poly-
gon being inserted with each already-indexed polygon and we compute the longest-
common substring of their canonical codes. As mentioned earlier, this operation could
be optimized at the implementation level by storing all the indexed polygons in a suffix
tree [10]. Sub-bond detection also introduces a visible overhead because of the step
where an inserted bond is compared against each indexed bond. This latter step could
be optimized by using bitsets to represent the set of children of each bond.

Despite the fact that the tool implementation does not incorporate these optimiza-
tions, the average execution times remain in the order of tens to hundreds of milli-
seconds across all model collections even with sub-poloygon and sub-bond detection.
The highest average insertion time (295ms) is observed for the Insurance collection.
This collection contains some models with large rigid components in their RPST. In
particular, one model contained a rigid component in which two task labels appeared
nine times each — i.e. nine tasks had one of these labels and nine tasks had the other —
and these tasks were all preceded by the same gateway. Putting aside this extreme case,
all insertion times were under one second and in 90% of the cases (lgg), the insertion
times in this collection were under 50ms without sub-fragment detection and 400ms
with sub-fragment detection. Thus we can conclude that the proposed technique scales
up to real-sized model collections.

min max avg std l9oo
SAP 4 85 20 14 40
Insurance 5 1722 32 113 49 no sub-fragments
BIT A 3 58 12 9 23
BIT B3 5 467 14 9 28
SAP 4 482 97 81 202
Insurance 26 4402 126 291 222 sub-polygons only
BIT A 18 128 41 20 59
BIT B3 5 150 33 24 69
SAP 10 859 232 124 398
Insurance 81 5043 295 365 390 sub-bonds + sub-polygons
BIT A 71 226 129 40 187
BIT B3 15 192 75 33 115

Table 1: Model insertion times (in ms).

As explained in Section 3, once the models are inserted, we can find all clones with
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a SQL query. The query to find all clones with at least two nodes and occurring at least
twice from the SAP reference models takes 75ms on average, 90ms for the insurance
models, 118 and 116ms for the BIT collections A and B3.

Finally, we evaluated the performance of the RPSDAG for handling fragment
queries. To this end, we randomly selected model fragments of sizes from five to
15 nodes from the SAP repository. In other words, for each fragment size (from 5 to
15), we randomly selected a fragment among all fragments of this size in the reposi-
tory. For each fragment, we ran a query to retrieve all occurrences of this fragment in
the collection of models. Each query was executed five times and the execution times
were averaged. The recorded average execution times ranged from 15 to 35 ms, with
an average of 24 ms and st. dev. of 6 ms.

4.3. Refactoring gain.

One of the main applications of clone detection is to refactor the identified clones
as shared subprocesses in order to reduce the size of the model collection and increase
its navigability. In order to assess the benefit of refactoring clones into subprocesses,
we define the following measure.

Definition 4.1. The refactoring gain of a clone is the reduction in number of nodes obtained
by encapsulating that clone into a separate subprocess, and replacing every occurrence of the
clone with a task that invokes this subprocess. Specifically, let S be the size of a clone, and N the
number of occurrences of this clone.® Since all occurrences of a clone are replaced by a single
occurrence plus N subprocess invocations, the refactoring gainis: S - N — S — N.

Given a collection of models, the total refactoring gain is the sum of the refactoring gains of
the clones of non-trivial clones (size > 2) in the collection.

It should be noted that when a sub-bond is refactored out, we need to introduce an
additional split and a join in the refactored sub-bond in order to separate it from the
parent bond. Accordingly, in the case of sub-bonds, the refactoring gain is defined as:
S-N—-—S—-N-2.

Table 2 summarizes the total refactoring gain for each model collection. The first
two columns correspond to the total number of clones detected and the total refac-
toring gain without any sub-fragment refactoring. The third and fourth column show
number of clones and refactoring gain with sub-polygon refactoring. Finally, the last
two columns give the number of clones and gain attained with both sub-polygon and
sub-bond refactoring. The table shows that a significant number of clones can be
found in all model collections and that the size of these model collections could be
reduced by 8.5-17% if clones were factored out into shared subprocesses. The table
also shows that sub-fragment clone detection adds significant value to the clone detec-
tion method. For instance, in the case of the insurance models, we obtain over twice
more clones and twice more refactoring gain when sub-fragment clone detection is per-
formed. The results demonstrate the potential usefulness of detecting and refactoring
both sub-polygons and sub-bonds.

OIf a clone appears multiple times under the same parent node in the RPSDAG (sibling clones), this
should be counted as multiple occurrences.
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Sibling clones — i.e. identical fragments appearing under the same parent node in
the RPSDAG - represented only a negligible fraction of all clones (7 sibling clones in
the SAP repository, 1 in the Insurance repository, none in the IBM repositories).

No sub-fragments With sub-polygons With sub-polygons + sub-bonds
Nr. clones gain Nr. clones gain Nr. clones gain
SAP 304 1359 (10.3%) 490 1859 (14%) 563 2261 (17.1%)
Insurance 108 395 (4%) 280 884 (9%) 302 933 (9.5%)
BIT A 57 195 (4.3%) 174 384 (8.4%) 178 391 (8.5%)
BIT B3 19 208 (6.5%) 49 259 (6.6%) 61 293 (9.2%)

Table 2: Total refactoring gain without and with sub-fragment refactoring.

Table 3 shows more detailed statistics of the clones found with sub-fragment detec-
tion (including both sub-polygons and sub-bonds). The first three columns give statis-
tics about the sizes of the clones found, the next three columns refer to the frequency
(number of occurrences) of the clones, and the last three correspond to the efactoring
gain. We observe that while the average clone size is relatively small (three-five nodes),
there are also large clones with sizes of 30+ nodes.

Size # occurrences Refactoring gain
avg max std. dev. avg max std. dev. avg max std. dev.
SAP 5.01 41 4.02 2.37 11 0.89 4.02 44 5.82
Insurance || 3.73 32 3.20 2.71 41 3.05 3.09 79 7.46
BIT A 3.02 16 2.10 2.74 9 1.28 2.20 15 3.10
BIT B3 3.36 9 1.51 3.69 20 3.39 4.80 37 8.09

Table 3: Statistics of detected clones (with sub-fragment detection).

It might be desirable not to refactor out small clones, as it would add complexity
and fragmentation in the model collection by introducing many “small” subprocesses
and making the dataset more difficult to navigate.

The smallest process model in the evaluated datasets has 4 nodes. Thus, it would
make sense to refactor out only clones that have at least 4 nodes in order not to intro-
duce subprocesses that are smaller than those that process modelers would normally
define themselves. Table 4 shows the refactoring gains obtained if we only consider
clones with at least four nodes. We observe that refactoring out only clones of at least
four nodes still gives us a significant amount of refactoring gain. For the SAP collection
we still identify 293 clones out of 555 clones (with sub-fragment detection), leading to
a refactoring gain of 14.7% (versus 17.1% if we consider all clones).

No. Clones Refactoring gain
SAP 300 1949 (14.7%)
Insurance 107 613 (6.25%)
BIT A 39 234 (5.11%)
BIT B3 27 171 (5.36%)

Table 4: Refactoring clones with size of at least 4 nodes (with sub-fragment detection).
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5. Related Work

This article is an extended version of a previous conference paper [16]. The ex-
tensions include the ability to detect sub-bond clones and sibling clones, as well as the
application of the RPSDAG to handle fragment queries. The experimental evaluation
was extended to assess the performance of the extended RPSDAG and of the query
processing, and to assess the usefulness of sub-bond and sibling clone detection. Be-
low, we review related work along the following areas: i) clone detection in software
repositories; ii) clone detection in model-drive engineering; iii) graph database index-
ing; iv) refactoring techniques for process model repositories; and v) query languages
for process model repositories.

Clone detection in software repositories

Clone detection in software repositories has been an active field for several years.
According to [17], approaches can be classified into: textual comparison, token com-
parison, metric comparison, abstract syntax tree (AST) comparison, and program de-
pendence graphs (PDG) comparison. The latter two categories are close to our prob-
lem, as they use a graph-based representation. In [18], the authors describe a method
for clone detection based on ASTs. The method applies a hash function to subtrees of
the AST in order to distribute subtrees across buckets. Subtrees in the same bucket are
compared by testing for tree isomorphism. This work differs from ours in that RPSTs
are not perfect trees. Instead, RPSTs contain rigid components that are irreducible and
need to be treated as subgraphs—thus tree isomorphism is not directly applicable.

Code clone detection using PDGs has been investigated in [19]. The PDG is a di-
rected graph where nodes correspond to lexer tokens, and edges correspond to control,
data and reference dependencies. A subgraph isomorphism algorithm is used for clone
detection. This technique is unsuitable for online processing due to performance and
memory requirements [17]. In contrast, we employ canonical codes instead of pairwise
subgraph isomorphism detection. The bottleneck is that we have to potentially consider
all permutation of gateways in a rigid component in order to construct the canonical
code. Our experiments show however that this can be achieved in sub-second times
even for large process models. Another difference between our approach and those
based on PDG is that we take advantage of the RPST in order to decompose the pro-
cess graph into SESE fragments, allowing us to focus on smaller fragments at once.

Clone detection in model-driven engineering

Work on clone detection has also been undertaken in the field of model-driven
engineering. [20] describes a method for detecting clones in large repositories of
Simulink/TargetLink models from the automotive industry. Models are partitioned into
connected components and compared pairwise using a heuristic subgraph matching
algorithm. Again, the main difference with our work is that we use canonical codes
instead of subgraph isomorphism detection.

In [21], the authors describe two methods for exact and approximate matching of
clones for Simulink models. In the first method, they apply an incremental, heuristic
subgraph matching algorithm. In the second approach, graphs are represented by a
set of vectors built from graph features: e.g. path lengths, vertex in/out degrees, etc.
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An empirical study shows that this feature-based approximate matching approach im-
proves pre-processing and running times, while keeping a high precision. However,
this data structure does not support incremental insertions/deletions.

Graph database indexes

Our work is also related to graph database indexing and is inspired by [9]. Other
related indexing techniques for graph databases include GraphGrep [13] — an index
designed to retrieve paths in a graph that match a regular expression. This problem
however is different from that of clone detection since clones are not paths (except for
polygons). Another related index is the closure-tree [22]. Given a graph G, the closure-
tree can be used to retrieve all indexed graphs in which G occurs as a subgraph. We
could use the closure tree to index a collection of process graphs so that when a new
graph is inserted we can check if any of its SESE regions appears in an already indexed
graph. However, the closure tree does not directly retrieve the exact set of graphs where
a given subgraph occurs. Instead, it retrieves a “candidate set” of graphs. An exact
subgraph isomorphism test is then performed against each graph in the candidate set.
In contrast, by storing the canonical code of each SESE region, the RPSDAG obviates
the need for this subgraph isomorphism testing.

In [23], we described an index to retrieve process models in a repository that exactly
or approximately match a given model fragment. In this approach, process models are
represented as Petri nets and paths in the process models are used as index features.
Given a collection of models, a B+ tree is used to reduce the search space by discarding
those models that do not contain any path of the query model. The remaining models
are tested for subgraph isomorphism.

Refactoring process model repositories

In [24], eleven process model refactoring techniques, called “smells”, are identified
and evaluated. Extracting process fragments as subprocesses is one of the techniques
identified. Our work addresses the problem of identifying opportunities for such “frag-
ment extraction”. Recent work has shown that several other types of refactoring oppor-
tunities can be semi-automatically identified by computing similarity metrics on model
fragments [25]. Specifically, this related work suggests to identify refactoring oppor-
tunities by computing similarity metrics on every pair of (SESE) fragments within a
given repository of process models. This approach can be used in particular to identify
“subprocess extraction” opportunities, including subprocess extraction opportunities
where the refactored fragments are not identical. However, in doing so, the approach
leads to many “false positives”, and thus requires additional filters or fine-tuning. Our
approach is less general, but does not produce false positives: Every clone detected
by our technique constitutes a subprocess extraction opportunity. Also, our approach
explicitly aims to reduce computational overhead, while this is not a concern in the
work reported in [25]. In other words, our technique strikes different tradeoffs and is
potentially complementary to the techniques presented in [25].
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Querying process model repositories

In this paper we showed how the RPSDAG can be used to efficiently query a repos-
itory for the existence of a given process fragment. Two major research efforts have
been dedicated to the development of query languages for process model repositories:
BP-QL and BPMN-Q. BP-QL [26] is a graphical query language based on an abstract
representation of BPEL, which is supported by a formal model of graph grammars for
query processing. BP-QL can be used to query process specifications written in BPEL
rather than possible executions, and ignores the run-time semantics of certain BPEL
constructs such as conditional execution and parallel execution.

BPMN-Q [27, 28] is also a visual query language which extends a subset of the
BPMN modelling notation and supports graph-based query processing. Similarly to
BP-QL, BPMN-Q captures the structural relationships between tasks. In [29], the au-
thors explore the use of an information retrieval technique to derive similarities of ac-
tivity names, and develop an ontological expansion of BPMN-Q to tackle the problem
of querying business processes that are developed with different terminologies.

The above works do not focus on efficient querying but rather on how to formulate
process model queries graphically, and on how to parse these queries. As such, these
works complement our work on fragment querying by providing an interface through
which users can submit queries.

6. Conclusion

We presented a technique to index process models in order to identify duplicate
SESE fragments (clones) that can be refactored into shared subprocesses. The pro-
posed index, namely the RPSDAG, combines a method for decomposing process mod-
els into SESE fragments (the RPST decomposition) with a method for generating a
unique string to identify a labeled graph (canonical codes). Canonical codes are used
to determine whether a SESE fragment in a model appears elsewhere in the same or in
another model.

The RPSDAG has been implemented and tested using process model repositories
from industrial practice. In addition to demonstrating the scalability of the RPSDAG,
the experimental results show that a significant number of non-trivial clones can be
found in industrial process model repositories. In one repository, more than 560 non-
trivial clones were found. By refactoring these clones, the overall size of the repository
is reduced by around 17%, which arguably would enhance the repository’s maintain-
ability. We also showed that the RPSDAG can be used to efficiently answer “fragment
queries”, that is, retrieving all occurrences of a given model fragment in a repository.

In separate work [30], we adapted the RPSDAG to deal with concurrent editing
and change propagation in the context of repositories of versioned process models.
Concurrent editing is handled by allowing modelers to obtain locks at the level of in-
dividual fragments of a process model as opposed to locking an entire model. This
operation corresponds to placing a lock on a node of the RPSDAG. Change propaga-
tion is achieved by allowing modelers to determine, on a fragment-by-fragment basis,
whether or not changes made in a version of a model should be propagated to other
versions.
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A standalone release of the RPSDAG implementation, together with sample mod-
els, is available at: http://apromore.org/tools. The RPSDAG implemen-
tation can be optimized in several ways: (i) by using suffix trees for identifying the
longest common substrings between the code of an inserted polygon and those of
already-indexed polygons; (ii) by storing the canonical codes of each fragment in a
hash index in order to speed up retrieval; (iii) by using the Nauty library for computing
canonical codes (http://cs.anu.edu.au/~bdm/nauty). Nauty implements
several optimizations that could complement those described in Section 2.2.

One issue that arises when extracting clones into shared subprocesses is that of
giving meaningful labels to the subprocesses. To assist analysts in this task, it may be
desirable to automatically suggest possible labels for the sub-processes to be extracted.
Such suggestions could be derived by analyzing the labels of the tasks inside the clone
and using meronymy relations to compute aggregate labels as investigated in [31].

Another avenue for future work is to extend the proposed technique in order to iden-
tify approximate clones. This has applications in the context of process standardization,
when analysts seek to identify similar but non-identical fragments and to replace them
with standardized fragments in order to increase the homogeneity of work practices.
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