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Abstract. Process mining techniques can be used to extract informa-
tion from event logs helping organizations to gain insights into the opera-
tion of their business processes. It is now possible to provide such analysis
information for ongoing executions in an on-line setting, yielding predic-
tions about the current execution or recommendations of actions to take,
commonly referred to as operational support . This paper defines a meta-
model for operational support making it possible for users or tools to
receive operational support without detailed knowledge of the algorithm
providing answers. The meta-model defines four types of queries: A sim-
ple query asks diagnostic information about the current execution and a
compare query compares the current execution with other similar execu-
tions. A predict query considers the future of previous executions similar
to the current one to make a prediction about its future. A recommend
query recommends the best next action to take based on predictions. We
formally define our meta-model and take care to provide implementation
suggestions for each defined concept. We present our implementation of
the meta-model in the workflow system Declare and the process mining
framework ProM.

Keywords: Process mining, operational support meta-model, predic-
tion, recommendation, ProM, Declare.

1 Introduction

More and more business processes are being supported by Process-Aware In-
formation Systems (PAISs) [6], i.e., software systems that manage and execute
these processes. PAISs record information about the different processes they
support in event logs. An event log is a set of traces and each trace consists of
events from start to end of the trace execution. Event logs provide an excellent
source of information useful for process mining [1]. Process mining is a technique
used to extract non-trivial and useful information from event logs. Hence using
process mining necessary insights can be gained to manage, control and improve
business processes.

Many existing process mining techniques work in an off-line setting, where the
past executions of traces are analyzed without considering the current running
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traces in a workflow system, i.e, only traces that have completed are considered.
It is also possible to use process mining in an on-line setting where support is
provided for traces that are still running in a workflow system. We refer to this
as operational support [2]. During operational support, a client sends a partial
execution trace along with a query to the process mining framework. A query is
simply a question to which a response is received.

Work in operational support usually focuses on either predicting the future
of a current execution or on providing recommendations. Such predictions or
recommendations are typically very specialized and a user has to interact with
different systems in order to make use of different algorithms. In [16] we presented
a protocol and architecture making it possible to access different algorithms us-
ing a common protocol and in this paper we propose a meta-model making it
possible to issue queries without any knowledge of the algorithm providing an-
swers. To do that, we introduce four main queries that can be handled under
operational support. A simple query checks the current performance of the cur-
rent partial execution trace, for example, the total execution time. A compare
query compares the performance of the current partial trace to other similar
traces. For example, is the execution time of the current trace to this point
higher or lower than the average. A predict query considers the future of traces
similar to the current and uses that to provide predictions about the current
trace. For example, what is the expected total execution time for this trace. Fi-
nally, a recommend query gives the best possible next action to be done based
on the current partial trace. For example, what is the best action to execute in
order to complete the execution as fast as possible.
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Fig. 1: Architecture of the opera-
tional support in ProM.

The infrastructure for operational sup-
port shown in Fig. 1 is implemented in
ProM1. A Client communicates with a
Workflow System, and an operational sup-
port service (OS Service; OSS in the fol-
lowing). The Client sends one of the four
queries to OSS, which forwards it to a
number of operational support providers
(OS providers; providers in the following),
which may implement different algorithms.
Responses are sent back to the OSS and
forwarded to the Client.

The main contribution of this paper is that we provide a generic way to
describe operational support in terms for four kinds of queries. This approach
uses the information in a partial execution trace and a model of the running
business process to provide support to the user. We define our operational sup-
port meta-model formally, but also take care to provide concrete implementation
suggestions in each case. We base our approach entirely on open standards, in-
cluding XML, XES, and XQuery. The ideas in this paper have been implemented

1 ProM is an extensible process mining framework . See www.promtools.org for
more information.
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in Declare2 and ProM. We provide examples showing how the four queries are
implemented and handled in Declare and ProM.

The remainder of the paper is organized as follows. First, we introduce pre-
liminaries in Sect. 3. Sect. 2 discusses related work. In Sect. 4, we describe and
formally define the meta-model for operational support. Sect. 5 discusses the im-
plementation in the ProM framework and the Declare workflow system. Finally,
Sect. 6 concludes the paper, and provides directions for future work.

2 Related Work

Work related to operational support focuses on either providing predictions or
recommendations about the future based on a current execution. One example is
the prediction engine of Staffware [13] which uses simulation to complete audit
trails with expected information about future steps. This approach is however
unreliable, since it is based on one run through the system using a copy of
the actual engine and it does not provide a means of learning to make better
predictions over time. A more refined approach focusing on transient behavior is
presented in [11]. It supports operational decision making using process mining
techniques and simulation in the context of YAWL. In [2] a concrete approach to
operational support using process mining is given. Here, process mining is used
in an active way to check the performance of cases that have not completed,
predict the future from the current execution, and provide recommendations
about the next steps to take in order to achieve a certain goal. This is supported
by learning a transition system annotated with time information.

In the context of the world wide web, there are a number of approaches to run
time support. Examples include the monitoring based on business rules [8], event
calculus [9] etc. Further on, there are various recommender systems that support
users in decision making [10]. These systems generate recommendations based
on the user’s preferences and are becoming an essential part of e-commerce and
information seeking activities. In [12] a recommendation engine implemented in
ProM is presented. It learns historic information from event logs for guiding a
user about the next work item to select. Similarly, the authors in [7] extend
the recommendation strategies introduced in [12] with additional ones and also
study the effect of log quality on recommendation quality. This work is also
related to the case based reasoning approach presented in [15] where a proto-
type CBRFlow is presented. This prototype is able to adapt a process model
to changing situations at run-time and provide the workflow system with learn-
ing capabilities. Recommendations can also be based on a Product Data Model
as discussed in [14] but these are specifically for product based workflows. The
authors in [3] propose a recommendation system based on a constraint-based
approach extended to consider not only the control-flow, but also the resource
perspective in order to optimize performance goals of business processes. In [5],
a self-adjusting approach for building context-sensitive recommendations on the

2 Declare is a workflow system based on declarative workflow modeling and LTL. See
more at declare.sf.net.
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most suitable next steps based on user behavior analysis, crowd processes, and
its application to process detection, is proposed.

3 Preliminaries

In order to understand the operation of the operational support service, we first
introduce a sample process we use in the remainder of this paper. The model in
made in Declare, but our approach is independent of the modeling language used.
To describe our operational support implementation, we introduce a concrete
representation of event logs and queries. For logs, we use the eXtensible Event
Stream (XES) format, an XML-based standard for event logs3. As XES is based
on XML, we find it natural to use the XML query language XQuery [4] to
represent queries.

BSc

MSc, BIS

MSc, ES

Master of 
BPM

precedence

reponse =not co-existence

Young

0…1

Fig. 2: Simple study process model.

Running Example. As a running
example, we use a simple process that
models the life of a student. The
underling idea is that a young per-
son should get an education. Further-
more, a person is only young once and
can only get one MSc degree. Finally,
in order to become a true Master of
Business Process Modeling, one needs
an MSc degree in BIS. This process
model is shown in Fig. 2 and is expressed in the Declare language. It consists of
a number of tasks and constraints. Tasks are shown as rectangles and represent
actions performed by a user, e.g., being Young, and constraints are shown as
arcs between tasks or as annotations of tasks. We will not go into details of the
Declare language, but only mention that the 0. . . 1 annotation of Young models
the requirement that a person is only young once, the hyper-arc from Young to
the three degrees models the constraint that if a person is young, they should get
an education (at least one of the three). The arc between the two MSc degrees
indicates that if one is present in an execution, the other cannot be, and, finally,
the arc from MSc,BIS to Master of BPM models that only after completing a
MSc,BIS can you become a true Master of BPM.

The XES Log Format. Listing 1 shows an example of a partial trace in the
XES format. The trace obtained by executing the model shown in Fig. 2. XES
is an XML-based standard for event logs and has a reference implementation
named OpenXES. The basic hierarchy of XES consists of one log object at the
top that contains all the event information related to a specific process (e.g., the
study process). The log contains a number of trace objects, each trace describing

3 Its full description and a reference implementation is available at www.
xes-standard.org.
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the execution of one specific instance (case or execution) of the logged process
(e.g., a specific student belonging to the study program). A trace contains a
number of event objects and each event corresponds to an activity in the business
process (e.g.,Young).

The trace and event objects have attributes describing them. Attributes are
described in extensions of the XES standard. In Listing 1, one trace object is
annotated by concept:name defined by the Concept extension. The value of this
attribute for the trace is Case1 . The attribute concept:name can be used to
name both traces and events. The name of the first event in Listing 1 is Young .
The next attribute is defined by the Lifecycle extension which specifies the type
of the event as a lifecycle transition. An event may refer to the start, completion,
cancellation, etc. of an activity. Here, the transition recorded is complete. Other
attributes are defined in various extensions as well. In Listing 1, we also see the
org:resource, describing which user (or other resource) executed the event, the
time:timestamp describing when the event was executed, and the non-standard
attribute Sex , describing the sex of the resource.

XQuery. XQuery is query language for XML data [4] similar to SQL. XQuery
uses FLWOR expressions that to select and perform computations on nodes of
the XML tree. FLWOR expressions are constructed from five clauses after which
it was named. The For clause iterates through a sequence of nodes and the Let
clause can make computations for each element iterated over. The Where clause
filters the values, retaining only those satisfying desired conditions, the Order
by clause sorts the values iterated over, and the Return clause builds the result
of the entire expression for each value of the sequence. XQuery has a number of
built-in functions used for string values, numeric values, date-time comparison,
node, sequence and boolean manipulation, and can also support user defined
functions.

An example of an XQuery FLWOR expression is shown in Listing 4 (a full
description of this query is given in Sect. 5). This query returns the service times
of the executed events from a partial trace like the one shown in Listing 1.

� �
1 <?xml ve r s i on=” 1 . 0 ” encoding=”UTF−8” ?>
2 <log xes . v e r s i on=” 1 . 0 ” xmlns=” h t t p : //www . x e s−s t a n d a r d . o r g ”>
3 <trace>
4 <string key=” c o n c e p t : n am e ” value=” Cas e1 ”/>
5 <event>
6 <string key=” c o n c e p t : n am e ” value=” Young ”/>
7 <string key=” l i f e c y c l e : t r a n s i t i o n ” value=” c om p l e t e ”/>
8 <string key=” o r g : r e s o u r c e ” value=” u s e r 1 ”/>
9 <date key=” t i m e : t i m e s t a m p ” value=” 2004−10−04 T 0 8 : 0 5 : 0 0 . 0 0 0+02 : 0 0 ”/>

10 <string key=” Se x ” value=” Male ”/>
11 </event>
12 . . .
13 </ trace>
14 . . .
15 </ log>� �

Listing 1: Part of a partial trace expressed in XES format.
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4 A Meta-Model for Operational Support

a)  Simple Query c) Predict Query

 b) Compare Query d) Recommend Query

A

B

Fig. 3: Operational Support actions.

In the operational support setting
assumed in this paper, a client
sends a partial trace and a query
to the operational support ser-
vice. The OSS handles four main
kinds of queries: simple, compare,
predict and recommend as shown
in Fig. 3. A simple query (a) only
looks at the current trace, shown
by the wide arrow. A compare
query (b) also looks at similar pre-
fixes at the same position of the execution, as shown by the narrower arrows of
the same length as the current trace. A predict query (c) not only looks at pre-
fixes of similar traces, but the entire traces, as indicated by the longer lines with
no arrowhead (to indicate they are not partial prefixes of traces, but finished
executions). Finally, a recommend query (d) expands the current trace with all
possible events (A and B), and makes predictions for all such expansions, shown
by the lines expanding each of the two possible extensions, and recommends the
expansion yielding the better prediction. In this section, we formally define these
four queries and their responses. We do this by first giving textual examples in
the context of our running example from Fig. 2, then introducing the formal
definition, and finally exemplifying the formal definition. In the next section, we
turn to discussing implementation details, including providing examples in our
implementation of all concepts and examples given in this section.

First we need to define a trace and a model. One can think of a trace as a
trace in XES format. Formally, a trace is a string of executed events:

Definition 1 (Trace). For an alphabet Σ, a trace τ over Σ is a finite string
over Σ, i.e., τ ∈ Σ∗.

We use the notation τ = e0e1 . . . en−1, |τ | = n, τ(i) = ei (for 0 ≤ i < |τ |), and
τ = τ1τ2 if τ(i) = τ1(i) (for 0 ≤ i < |τ1|), τ(i + |τ1|) = τ2(i) (for 0 ≤ i < |τ2|),
|τ | = |τ1|+ |τ2|. The empty trace is ε (i.e., |ε| = 0).

To make our meta-model independent of any concrete modeling language,
we represent a model as a (possibly infinite) set of possible traces:

Definition 2 (Model). For an alphabet Σ, a model over Σ is a set M ⊆ Σ∗.

4.1 Simple Query

A simple query allows arbitrary computations on the current execution trace.
This, in particular, does not require an underlying model. Examples of simple
queries for the example in Fig. 2 are:

i. the degrees a student has completed so far,
ii. the degree that a student spent the longest time on,
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iii. how long it has taken for the student to complete a MSc, BIS,
iv. the average execution time for all the degrees so far, and
v. the total time since the start of the current execution.

Each of these queries performs a simple computation on a given trace. A
simple query Q is a function evaluating a trace to an element of a given set.
For example, to compute the total execution time, we would write a function
returning the difference between the timestamp of the last and first events. The
result of this function would be real numbers (the number of seconds).

Definition 3 (Simple Query). Given an alphabet, Σ, a simple query over
Σ is a pair Q = (q, α), where α is a result set and q : Σ∗ → α is a function
mapping traces into the result set. For a trace τ ∈ Σ∗, the result of a simple
query Q = (q, α) is the value Q(τ) := q(τ) ∈ α.

Example 1 (Time Since Start of Execution). To compute the total time spent
(ignoring possible idle time) on a trace, we define the function:

totalT ime(τ) =

{
0 if |τ | < 2, and

timestamp(τ(|τ | − 1))− timestamp(τ(0)) otherwise,

assuming the timestamp function extracts the value of the time:timestamp at-
tribute. We use the function in a query QtotalT ime = (totalT ime,R).

4.2 Compare Query

A simple query only deals with a single (partial) trace. Often we wish to make
comparisons with traces with a similar prefix as a given partial trace. One such
query is to compare the performance of the current execution to other similar
executions. A compare query allows such comparisons.

Compare queries need a partial trace and the model as input. In a compare
query, we only consider traces from the model that have a similar past as the
current partial trace. The filter criteria can be based on a resource, task, data,
or other attributes from the partial trace. Examples of use cases that can be
handled by a compare query are:

i. in how many similar traces has a Master of BPM been already executed,
ii. how long (on average) other similar traces spent to finish a BSc, and

iii. how long time has similar executions on average spent to get to where the
current execution is.
To capture what we mean by similar traces, we introduce a projection map-

ping , which is a mapping abstracting away information from the original trace.
Projection mappings essentially remove uninteresting attributes and events, for
example:

i. name: consider only event names and ignore all other event attributes,
ii. name and resource: consider event and resource names, and

iii. name of complete events: consider the event name of events whose transition
type is complete, and remove all events which are not complete events and
all other attributes.
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To support online computation, we require that applying a projection map-
ping more than once does not remove further information and that it is compo-
sitional, i.e., that the projection does not depend on the entire trace, but only
on the events that it is applied to. Formally:

Definition 4 (Projection Mapping). A mapping p : Σ∗ → Σ∗ is a projec-
tion mapping if it is a homomorphism wrt. trace composition, i.e., p(τ1τ2) =
p(τ1)p(τ2) for all τ1, τ2 ∈ Σ∗.

Due to the compositional nature of projection mappings, it suffices to specify
how to map traces of length 1 to traces of length 0 or 1. Thus, we can specify a
projection mapping as:

Example 2 (Name of Complete Events). To project onto the names of complete
events only, we define:

pnameComplete(e) =

{
ε if transition(e) 6= complete, and

name(e) otherwise.

Given a projection mapping and a partial trace, we define a notion of “all
similar traces” by introducing all prefixes matching the trace under the projec-
tion mapping:

Definition 5 (Similar Prefixes). Given a trace τ , a projection mapping p,
and a model M ⊆ Σ∗ the similar prefixes of τ in M is the set prefixesM (p, τ) :=
{τ ′ | τ ′τ ′′ ∈M , p(τ) = p(τ ′)}.

As prefixesM (p, τ) may be infinite for some partial trace τ of a model M ,
we cannot necessarily provide a closed expression for a compare query. Instead,
we give an estimate in the form of a probability function. Using the notion of
similar prefixes, we are now ready to formally define a compare query:

Definition 6 (Compare Query). Given an alphabet, Σ, a compare query is
a triple C = (M,Q, p), where M is a model, Q = (q, α) is a simple query, and p is
a projection mapping over Σ. For a (partial) trace τ ∈ Σ∗, the result of a compare
query (the comparison), C(τ), is a probability function C(τ) : α → [0, 1] such
that for a ∈ α, C(τ)(a) is the probability that Q(τ ′) = a for a random similar
trace prefix τ ′ ∈ prefixesM (p, τ).

We put no requirement on the probability measure C(τ), other than requiring
that it is indeed a probability measure. In particular, we do not require that it
assumes that all traces in M are equally probable.

Example 3 (Average Time to Reach Current Position). To compute the av-
erage time spent for other traces with the same sequence of complete event
names to get where we are, we would use the compare query CaverageT ime =
(M,QtotalT ime, pnameComplete) using the simple query and projection mapping
defined in Examples 1 and 2. We get the average by computing the expectation
for the returned probability function.
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4.3 Predict Query

A predict query is similar to a compare query, except instead of just considering a
prefix of similar traces of a model, it considers all possible futures or completions
of such traces. Examples of predict queries include:

i. total execution time after becoming a Master of BPM,
ii. probability of becoming a Master of BPM, and

iii. expected total execution time of the current trace.
For predict queries, we still use projection mappings to define similar traces,

but we no longer only consider similar prefixes, but the completion of such similar
executions. To do this, we define the possible completions of a partial trace in a
model:

Definition 7 (Completion). Given a trace τ , a projection mapping p, and
a model M ⊆ Σ∗ the completion of τ in M is the set completionM (p, τ) :=
{τ ′τ ′′ ∈M | p(τ) = p(τ ′)} = {τ ′τ ′′ ∈M | τ ′ ∈ prefixesM (p, τ)}.

Definition 8 (Predict Query). Given an alphabet, Σ, a predict query is a
triple P = (M,Q, p), where M is a model, Q = (q, α) is a simple query, and p is
a projection mapping over Σ. For a (partial) trace τ ∈ Σ∗, the result of a predict
query (the prediction), P (τ), is a probability function P (τ) : α → [0, 1] such
that for a ∈ α, P (τ)(a) is the probability that Q(τ ′) = a for a random similar
trace τ ′ ∈ completionM (p, τ).

Example 4 (Expected Total Execution Time). To compute the expected total
execution time for traces with the same prefix of complete event names, we use
the predict query PtotalT ime = (M,QtotalT ime, pnameComplete). We note that the
query is the same as the compare query in Example 3; only the query type has
changed.

4.4 Recommend Query

Where a predict query can predict the future, a recommend query tries to rec-
ommend the best next action to take to achieve a desired goal. The result of
a recommend query is based on a given goal that has to be achieved. For the
running example shown in Fig. 2, examples of such goals include:

i. to highest chance of becoming a Master of BPM,
ii. to finish a MSc, BIS in the cheapest possible way, or

iii. finish execution as fast as possible.
The basic idea is to extend a given trace τ with all possible next events,

predict the goal in each trace, and recommend actions resulting in the best
prediction. In order for this to make sense, we need to define which prediction
is best. We could do this by having a user impose a total order of probability
functions, but we instead assign a value to any prediction and use this to order
the next events. We do this because we expect most of the predicted values to
be either numerical values or non-numerical values from a small finite set, and
assigning a value is easier for a user to understand than defining a total order.
Examples of evaluations would be:
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i. highest median (value would be the median),
ii. lowest average (value would be the expectation times minus one), or

iii. highest 95% percentile (value would be 95% percentile).
Formally, an evaluation just assigns a real value to a probability function:

Definition 9 (Evaluation). Given a set of values, α, an evaluation over α
is a function E : [0, 1]α → R assigning to a probability measure a real number,
the value of the probability measure.

Example 5 (Lowest Average). An evaluation optimizing for the lowest average
of a numerical prediction would be ElowestAverage(P) = −E(P).

Definition 10 (Recommend Query). Given an alphabet, Σ, a recommend
query is a pair R = (P,E), where P = (M,Q, p) is a predict query over
Σ with Q = (q, α) and E is an evaluation over α. We let next(τ) := {e ∈
Σ | τeτ ′ ∈ M} ∪ {ε | τ ∈ M} denote all possible continuations, and define
predictionsM (τ) = {P (ττ ′) | τ ′ ∈ next(τ)} as all predictions of possible con-
tinuations. We let mτ = max {E(P) | P ∈ predictionsM (τ)} be the maximal
evaluation of a prediction. The result of the recommend query (the recommen-
dation) is R(τ) := {τ ′ ∈ nextM (τ) | E(P (ττ ′)) = mτ}. If the trace contains no
valid continuation, ∅ is returned.

We note that the complexity of the definition stems from the fact that we need
to include the empty trace in the set of possible continuations if terminating the
trace is a valid choice, and that we may have multiple continuations yielding
the highest evaluation. We note that while we here compute a maximum over
a possibly infinite set, it is finite in practise as we often can compute the set of
enabled actions using a model as a small finite set, and in our implementation
we require clients to provide candidates among which the continuations should
be found.

Example 6 (Fastest Execution). To optimize for the fastest execution we could
use Rfastest = (PtotalT ime, ElowestAverage).

5 Implementation

In the previous section, we defined and exemplified a meta-model for operational
support. Here, we provide concrete technology suggestions for implementing the
various parts, including how to represent the data required by the meta-model,
how to implement a provider, and we show an example client application, namely
Declare.

5.1 Data Representation

Looking at the meta-model in discussed in Sect. 4, we see the need to be able
to represent: queries and the result set of queries (for simple queries), models
and projection mappings (for compare and predict queries), and evaluations (for
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recommend queries). Furthermore, we need to be able to specify (partial) traces
(as the query parameters), values of result sets and probability functions (for
the results of queries).

For the representation of traces we use the XES format. If a model comprises
a finite set of traces, it can also be represented using XES. Alternatively, it can
be implemented using, e.g., a finite automaton or a Petri net. We leave the exact
representation up to the individual providers, but we logically view any process
model as a (possibly infinite) XES log.

For queries, result sets, and values of result sets, we could define our own
language, but this is tedious and error-prone, os we rely on pre-existing stan-
dards. As our traces and models are represented using XES and hence XML
(at least conceptually), we have chosen to use XQuery. By using XQuery, we
directly inherit descriptions of the query, the result set, and the value of the
result set. XQuery also provides representations of the projection mappings and
evaluations as they can be viewed as a particularly simple kind of queries.

The final consideration is how to represent probability functions, which is
a bit more difficult as the result sets often are infinite. Instead of representing
probability functions explicitly, we distinguish between two kinds of observations:
continuous values and observations from a finite set. For finite sets, we represent
the probability of each element of the set, and for continuous values, we represent
common statistical notions, such as the mean, the median, the 25% and 75%
quartiles, as well as various confidence intervals. We allow individual providers
to supply more information (such as which statistical distribution is assumed
and its parameters), but require at least the basic information, which can be
represented finitely.

5.2 Provider Implementation

In Fig. 1, we saw the infrastructure of the operational support framework imple-
mented in ProM. The exact protocol used for communication is explained in [16];
here we only explain parts relevant for understanding the implementation and
considerations for the meta-model. The Provider interface shown in Listing 2 re-
flects the meta-model defined earlier based on the four main queries handled by
operational support service. We have methods for session management, accept,
destroy, and updateTrace, and for actual queries. The model is provided once (in
accept), and the current trace is built incrementally in the Session using update-
Trace. All queries take a log containing all continuations suggested by the client
and a query (representing a simple query, as the return set is implicitly defined
by the query in XQuery). In addition to projection mappings and evaluations
as prescribed by the meta-model, we also include a boolean value indicating
whether the trace is complete or not, which is important for some queries.

5.3 Example Client

We have implemented an operational support client in Declare as shown in Fig. 4.
The Declare client executes tasks from a given process model and can at any
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� �
1 public interface Provider extends S e r i a l i z a b l e {
2 boolean accept ( Se s s i on s , List<Str ing> modelLanguages ,
3 List<Str ing> queryLanguages , Object model ) ;
4 void destroy ( Ses s i on s ) ;

6 <R, L> R simple ( Se s s i on s , XLog ava i l ab l e I t ems , L query , boolean done ) ;
7 <R, L , P> Predict ion<R> compare ( Ses s i on s , XLog ava i l ab l e I t ems ,
8 L query , P pro j e c t i on , boolean done ) ;
9 <R, L , P> Predict ion<R> pred i c t ( Se s s i on s , XLog ava i l ab l e I t ems ,

10 L query , P pro j e c t i on , boolean done ) ;
11 <R, L , P, E> Recommendation<R> recommend ( Ses s i on s , XLog ava i l ab l e I t ems ,
12 L query , P pro j e c t i on , E evaluat ion , boolean done ) ;

14 void updateTrace ( Ses s i on se s s i on , XTrace t race ) ;
15 }� �

Listing 2: Provider interface.

Fig. 4: Declare client showing results from the query from Listing 3 and Listing 4
(inset).

point during the execution send queries to the OSS in ProM. The parameters
correspond closely to what providers expect from Listing 2. If we consider the
study process from Fig. 2, we may be interested in seeing how long we have
taken since the beginning of the execution. We can write a simple XQuery ex-
pression doing this, shown in Listing 3. The implementation corresponds to the
one of Example 1. We extract the timestamp of the first and last events of the
trace and return the difference. The query is simple we do not need to use the
FLOWR syntax as we just compute a single value. We use a simplified syntax
for logs, where we have direct access to attributes of events instead of having to
go through the string elements as shown in Listing 5. The current trace is re-
ferred to using the variable $trace. For presentation, we divide by one day (1440
minutes) to obtain a result expressed in days. We see the result of executing this
query after performing task Young in Fig. 4. We also see that Declare provides
a set of standard queries.

A more interesting query is shown in Listing 4. Here, we compute the execu-
tion time of all executed tasks and need more of the FLOWR syntax for XQuery.
In the query we iterate two variables ($e and $f ) over all events in the trace
(l. 1). We ensure that of the two events, one is a start event and the other is a
complete event (l. 2) and that they belong to the same action instance and have
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� �
1 ( xs:dateTime ($ t race / event [ l a s t ( ) ] / time:timestamp ) −
2 xs:dateTime ($ t race / event [ p o s i t i on ( ) = 1]/ time:timestamp ) )
3 div xs:dayTimeDuration ( ’ PT1440M ’ )� �

Listing 3: Simple XQuery extracting the duration of a trace in days.

the same name (l. 3). For each such pair, we construct an item which contains
a node for the time (computed similarly to Listing 3 except we use the events
$e and $f ), and a node with the name of the events. Declare uses heuristics for
displaying tabular data, and it automatically displays such data as seen in the
inset at the bottom left of Fig. 4. Note that for the inset we have additionally
executed the ES task.

Advanced Queries. In the previous example, we discussed a simple query
where computations are done on a single partial trace. In that case, we referred
to the current trace as $trace. To perform anything but simple queries, we also
need to consider the model. We conceptually consider the model as a (possibly
infinite) set of traces, and use queries using the exact same syntax to simplify
reusing them. We provide examples of predict and recommend queries in Fig. 5.
Both queries require a projection mapping, which is just an XQuery function
mapping each event to a domain of choice, considering events equivalent if their
activity names are identical. In the example we consider events equivalent if they
share name and ignore all events that are not complete events, using the mapping
in Listing 6. The prediction provides an estimate and a confidence interval,
and the recommendation contains a recommended action (we are optimizing for
lowest average) and predictions for all possible next actions.

The simple provider presented here uses a historical log as model, and sim-
ply computes values for all matching traces of the log, assuming a standard
distribution of the results for computation of confidence intervals. As we see,
the confidence intervals are very large compared to the predicted values, indi-
cating that the predicted values are not very trustworthy. This can be improved
by instead discovering or enhancing a model from the log (this can, e.g., be a
Petri net or a transition system), but this may lead to models which comprise
infinitely many possible executions.

� �
1 for $e in $ t race / event , $ f in $ t race / event
2 where $e/ l i f e c y c l e : t r a n s i t i o n= ’ s t a r t ’ and $ f / l i f e c y c l e : t r a n s i t i o n= ’ c o m p l e t e ’
3 and $e/ concep t : i n s t anc e=$f / concep t : i n s t anc e and $e/ concept:name=$f / concept:name
4 return <item>
5 <time>{ ( xs:dateTime ($ f / time:timestamp)−xs:dateTime ($ e/ time:timestamp ) )
6 div xs:dayTimeDuration ( ’ PT1440M ’ )
7 }</time>
8 <activity>{ $e/ concept:name }</activity>
9 </item>� �

Listing 4: Simple XQuery extracting the execution time of tasks.

13



� �
1 <?xml ve r s i on=” 1 . 0 ” encoding=”UTF−8” ?>
2 <log xes . v e r s i on=” 1 . 0 ” xmlns=” . . . ” xmlns:concept=” . . . ” . . .>
3 <trace concept:name = ” Cas e1 ” >
4 <event
5 concept:name = ” Young ”
6 l i f e cyc l e : t rans i t i on = ” c om p l e t e ”
7 org:resource = ” u s e r 1 ”
8 time:timestamp = ” 2004−10−04 T 0 8 : 0 5 : 0 0 . 0 0 0+02 : 0 0 ”
9 Sex = ” Male ” />

10 . . .
11 </ trace>
12 . . .
13 </ log>� �

Listing 5: Simplified representation of the partial trace shown in Listing 1.

Fig. 5: Declare client showing predict (left) and recommend (right) results from
the query shown in Listing 3.

We leave the exact interpretation of how to compute the probability distri-
bution up to the provider; if the model is finite as here, they can provide an
exact response and otherwise providers may use statical analysis of the queries
and derive a closed expression for the result over the infinite model, they may
assume that the result of the query is absolutely convergent as we execute loops
and iterate until a desired accuracy is achieved, or they may use sampling based
on some heuristics.

6 Conclusion and Future Work

In this paper, we have presented a meta-model for operational support. The
meta-model defines four kinds of queries of increasing complexity and power, in-
cluding simple queries providing statistics about the current execution, compare
queries comparing the current partial execution to similar partial executions,

� �
1 i f ($ event / l i f e c y c l e : t r a n s i t i o n = ’ c o m p l e t e ’ )
2 then $ event / concept:name
3 e l s e ( )� �

Listing 6: Simple projection mapping.
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predict queries yielding predictions about the outcome of the current execution
based on the outcome of completed executions with similar prefix, and recom-
mend queries providing recommendations of what to do to achieve a goal. We
have provided implementations suggestions based on open standards for all con-
cepts used in the definitions, and presented a concrete implementation is the
workflow system Declare and the process mining framework ProM. While we
have used Declare as example modeling formalism, our approach is indepen-
dent of a concrete modeling language as we conceptually view models as sets of
possible execution traces.

Future work includes testing and comparing algorithms for operational sup-
port. This is now possible due to a unified interface. Also, here we have only con-
sidered a single-client/single-case scenario where we have a single client working
on a single case. It would be interesting to consider situations where two or more
clients work on a single case, a single client works on multiple cases, or multiple
clients working on multiple cases, both from a meta-model perspective and from
an implementation and evaluation perspective.
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