
Discovering Characteristics of
Stochastic Collections of Process Models

Kees van Hee1, Marcello La Rosa2,3, Zheng Liu1, and Natalia Sidorova1

1 Eindhoven University of Technology, The Netherlands
{k.m.v.hee,z.liu3,n.sidorova}@tue.nl
2 Queensland University of Technology, Australia

m.larosa@qut.edu.au
3 NICTA Queensland Lab, Australia

Abstract. Process models in organizational collections are typically created by
the same team and using the same conventions. As such, these models share many
characteristic features like size range, type and frequency of errors. In most cases
merely small samples of these collections are available due to e.g. the sensitive
information they contain. Because of their sizes, these samples may not provide
an accurate representation of the characteristics of the originating collection. This
paper deals with the problem of constructing collections of process models from
small samples of a collection, with the purpose to estimate the characteristics
of this collection. Given a small sample of process models drawn from a real-
life collection, we mine a set of generation parameters that we use to generate
arbitrarily-large collections that feature the same characteristics of the original
collection. In this way we can estimate the characteristics of the original col-
lection on the generated collections. We extensively evaluate the quality of our
technique on various sample datasets drawn from both research and industry.

1 Introduction

Today there are millions of business process models around [8]. They are used for
various reasons such as documentation of business procedures, performance analysis,
and process execution. Organizations have their own process model collections to de-
scribe their business procedures. For example, Suncorp, one the largest Australian in-
surers, maintains a repository of over 6,000 process models [10]. Also consultancy firms
and software companies like SAP provide collections of “reference models” to develop
customer-specific process models.

With the proliferation of process models, it comes a variety of tools to manipulate
such models, e.g. process editors, simulation tools and conformance checkers. These
tools, developed by both software vendors and academics, contain often sophisticated
algorithms that use process models as input. In order to evaluate these algorithms, and
in particular to determine their amortized performance, we use benchmarks. In this
context, a benchmark is a fixed set of process models that is used to compare different
algorithms. These benchmarks either come from practice or are manually constructed to
have some extreme properties. For instance, benchmarks can be selected from various
existing public process repositories. One of the first process repositories for research

purpose is Petriweb [4], and recently AProMoRe [8] was developed. Although bench-
marking is a popular technique, there is a drawback: one can only compare algorithms
with respect to the same set of process models and we have no idea how they behave on
other models. This is one of the motivations for our research: we would like to be able
to derive statistically sound statements over algorithms. In order to do so we have to
define distributions over the set of all possible process models. We want such a distri-
bution to reflect the modeling style of a company for which the performance estimation
is made.

In this paper, we deal with the problem of generating stochastic process model col-
lections out of small samples drawn from an existing (real-life) collection. The gen-
erated collections should be arbitrarily large and accurately reproducing the character-
istics of the existing collection. We choose workflow nets as the language to model
processes, but our method is not restricted to this particular model. For model gener-
ation, we use construction (model refinement) rules, applied iteratively, starting with
the most primitive workflow net possible, consisting of one place only. The probabil-
ity distribution for the selection of the next construction rule is one of our generation
parameters. Another generation parameter is the number of refinement steps, being a
random variable, independent of the rules themselves. We use a Poisson distribution
there, but any other discrete probability on the natural numbers will do as well. In this
way we can make an arbitrarily large collection from a small dataset.

To estimate the generation parameters from a small collection of models, we it-
eratively apply nine construction rules used in the generation process in the reverse
direction—as reduction rules. Assuming that the sample was generated via these rules,
we estimate the probability with which each rule was used. These parameters are then
used to guide the generation of new process models from the sample. The generated
collection can be used for benchmarking, and moreover, it can be used for determin-
ing characteristics of the original collection (or the collection the company will obtain
if they continue to use their current modeling practices) with probabilistic accuracy.
For example, we can determine the distribution of the longest or shortest path, or the
deadlock probability. As a result, even a very small dataset, on which a direct accurate
estimation of characteristic values is impossible, provides enough information for gen-
erating enough process models, allowing one to give precise characteristic values for the
underlying stochastic collection. This sounds like magic but is very close to bootstrap
estimation in classical statistics [12]. While a collection of, for example, five process
models would give us just five numbers showing the length of the shortest path, making
it difficult to estimate the distribution of the length of the shortest path over the whole
collection, at the same time, these five models would provide enough information to
estimate the generation parameters with a high precision (assuming that these five mod-
els are of a sufficiently large size). Then we can generate an arbitrarily large collection
from the same distribution as the sample’s one.

To make sure the generation parameters and the characteristics of the generated
collections do correspond to those of the originating process model collection, we tested
our approach on very large samples generated both by ourselves and extracted from
real-life datasets. In the first set of experiments we generated a large collection with
some parameters and we took small samples from this collection in order to estimate

the generation parameters. Since we knew the real parameters, we could determine the
quality of the estimations, and they turned out to be very good. We also did this for the
collections coming from practice. Here we also took small samples from reasonably
large collections and we compared the characteristics estimated using our approach
with the characteristics of the original collection as a whole. Here our approach also
performed quite well.

The rest of the paper is organized as follows. Section 2 introduces some basic con-
cepts. Section 3 describes how workflow nets can be generated using our rules. Section
4 shows how the generation parameters can be estimated. Sections 5 and 6 present our
empirical results. Section 7 concludes the paper. The appendix gives a formal construc-
tion of the probability space for a stochastic collection of process models.

2 Preliminaries

Workflow nets are a subclass of Petri nets extensively applied to the formal specifi-
cation and verification of business processes [1]. In addition, mappings exist between
process modeling languages used in industry (e.g. UML ADs, EPC, BPMN, BPEL) and
workflow nets. These mappings provide a basis for transferring the results outlined in
this paper to concrete process modeling notations. In the following, we formally define
Petri nets and workflow nets.

For a set S, B(S) denotes the set of all bags over S, i.e. B(S) : S → N where N
is the set of natural numbers. With [a3, b2, c] we denote a bag with 3 occurrences of a,
2 occurrences of b, and 1 occurrence of c. A sequence σ of length l ∈ N over S is a
function σ : {1, . . . , l} → S, which we denote as σ = 〈σ(1), σ(2), . . . , σ(l)〉. The set
of all finite sequences over S is denoted as S∗.

Definition 1 (Petri net). A Petri net is a 3-tuple N = (P, T, F), where P and T are two disjoint
sets of places and transitions respectively, F ⊆ (P × T) ∪ (T × P) is a flow relation. Elements
of P ∪ T are the nodes of N , elements of F are the arcs.

Given a node n ∈ (P ∪ T), we define its preset •n = {n′ | (n′, n) ∈ F}, and its
postset n• = {n′ | (n, n′) ∈ F}.

Definition 2 (Workflow net). A workflow net is a 5-tuple N = (P, T, F, i, f) where (P, T, F)
is a Petri net, i ∈ P is the initial place, such that •i = ∅, f ∈ P is the final place, such that
f• = ∅, and each node n ∈ P ∪ T is on a directed path from i to f .

Soundness is an important property of workflow nets [1]. Intuitively, this property
guarantees that a process always has an option to terminate and that there are no dead
transitions, i.e. transitions that can never be executed.

3 Generation of Petri Nets

In order to generate workflow nets, we employ a stepwise refinement approach with a
number of construction rules. We first define the construction rules, and then introduce
the approach of generation of workflow nets. Note that it has been proved in [6] that the
construction rules enable us to generate all Petri nets.

Fig. 1: Construction rules

3.1 Construction Rules

We consider a set of nine construction rules provided in Fig. 1. Rules R1, . . . , R5 were
studied by Berthelot in [2] and Murata in [11] as reduction rules that preserve liveness
and boundedness properties of Petri nets. The rules are often called Murata rules (In
fact Murata considered one more rule, a loop addition with a (marked) place, similar to
R3. We do not use this rule since it would destroy the soundness property). These rules
are used in [5] to generate the so-called Jackson nets, which is a class of well-formed
workflow nets. Besides Murata rules, we also propose rules R6, . . . , R9 to generate
Petri nets. Let N be the original net and R be one of the construction rules. If we apply
R to N then we get a generated net N ′. If we use R in the inverse direction, then we
can get N again by reducing N ′. Consequently, each rule R defines a binary relation
ϕR on the set of nets. Let N be the set of all Petri nets, ϕRi ⊆ N ×N . In our case we
have (N,N ′) ∈ ϕRi . In a similar way we define the construction rules as follows.

Definition 3 (Place refinement rule R1). Let N,N ′ ∈ N . We say (N,N
′
) ∈ ϕR1 if and only

if there exist places s, r ∈ P
′
, s 6= r and a transition t ∈ T

′
such that: •t = {s}, t• = {r},

s• = {t}, •s 6= ∅, •s 6⊆ •r. The net N satisfies: P = P
′
\ {s}, T = T

′
\ {t}, F =

(F
′
∩ ((P × T) ∪ (T × P))) ∪ (•s× t•).

Definition 4 (Transition refinement rule R2). Let N,N ′ ∈ N . We say (N,N
′
) ∈ ϕR2 if and

only if there exist a place s ∈ P
′

and transitions t, u ∈ T
′
, t 6= u such that: •s = {u}, s• = {t},

•t = {s}, t• 6= ∅, u• 6⊆ t•. The net N satisfies: P = P
′
\ {s}, T = T

′
\ {u}, F =

(F
′
∩ ((P × T) ∪ (T × P))) ∪ (•u× s•).

Definition 5 (Arc refinement rule R3). Let N,N ′ ∈ N . We say (N,N
′
) ∈ ϕR3 if and only

if there exist two nodes m,n ∈ P
′
∪ T

′
, such that: | • m| = 1, m• = {n}, |n • | = 1,

•n = {m}, (•m × n•) ∩ F
′
= ∅. The net N satisfies: P ∪ T = (P

′
∪ T

′
) \ {m,n},

F = (F
′
∩ ((P × T) ∪ (T × P))) ∪ (•m× n•).

Definition 6 (Place duplication rule R4). Let N,N ′ ∈ N . We say (N,N
′
) ∈ ϕR4 if and only

if there exist two places s, r ∈ P
′
, s 6= r such that: •s = •r, s• = r•. The net N satisfies:

P = P
′
\ {s}, T = T

′
, F = F

′
∩ ((P × T) ∪ (T × P)).

Definition 7 (Transition duplication rule R5). Let N,N ′ ∈ N . We say (N,N
′
) ∈ ϕR5 if and

only if there exist two transitions t, u ∈ T
′
, t 6= u such that: •t = •u, t• = u•. The net P = P

′
,

T = T
′
\ {u}, F = F

′
∩ ((P × T) ∪ (T × P)).

Definition 8 (Arc refinement rule R6). Let N,N ′ ∈ N . We say (N,N ′) ∈ ϕR6 if and only
if there exist two nodes m,n ∈ P ′ ∪ T ′, such that: | • m| = 1, m• = {n}, |n • | = 1,
•n = {m}, (•m × n•) ∩ F ′ = ∅. The net N satisfies: P ∪ T = (P ′ ∪ T ′) \ {m,n}, F =
(F ′ ∩ ((P × T) ∪ (T × P))) ∪ (•m× n•).

Definition 9 (Place bridge rule R7). Let N,N ′ ∈ N . We say (N,N ′) ∈ ϕR7 if and only if
there exist one place s ∈ P ′ and two transitions u, t ∈ T ′ such that: •s = {u}, s• = {t}. The
net N satisfies: P = P ′ \ {s}, T = T ′, F = F ′ ∩ ((P × T) ∪ (T × P)).

Definition 10 (Transition bridge rule R8). Let N,N ′ ∈ N . We say (N,N ′) ∈ ϕR8 if and only
if there exist one transition t ∈ T ′ and two places s, r ∈ P ′ such that: •t = {s}, t• = {r}. The
net N satisfies: P = P ′, T = T ′ \ {t}, F = F ′ ∩ ((P × T) ∪ (T × P)).

Definition 11 (Arc bridge rule R9). Let N,N ′ ∈ N . We say (N,N ′) ∈ ϕR9 if and only if there
exist two nodes s, r ∈ P ′ ∪ T ′, such that (s, r) ∈ F ′. The net N satisfies: P = P ′, T = T ′,
F = F ′ \ {(s, r)}.

In Figure 1 we only listed examples of the rules. For instance, in Rule R7, we can
also use a place to bridge transitions A and C from C to A, instead of from A to C as
shown in the Fig. 1. We observe that different rules can generate the same structure. It is
clear that the place refinement rule and the transition refinement rule can both generate
sequential structures. Another example is shown in Fig. 2. In order to generateN ′, from
N we can apply either the loop addition rule on the place s, or the transition duplication
rule on the transition C.

It has been proved in [5] that the rules R1 . . . R5 preserve the soundness property of
workflow nets (with respect to a given marking). Therefore, all Jackson nets are sound.
Moreover, in [7] the authors proved that Jackson nets are generalized sound, which
is a more powerful property and important for refinements. It is easy to show by an
example that the rules R7, R8, R9 destroy the soundness property. For instance, in Fig.
3 after applying a place bridge rule from transition B to transition A to a sound net N ,
a deadlock is introduced in the refined net N ′ and N ′ is not sound anymore.

Fig. 2: Transition duplication rule and loop addition rule result in the same structure

Fig. 3: Place bridge rule breaks soundness

3.2 Generation of Workflow Nets

In order to generate a workflow net, we adopt a stepwise refinement approach. Given
two workflow netsN andN ′,N generatesN ′ if and only ifN ′ can be obtained fromN
by applying zero or more times of a construction rule, without applying any rules to the
initial and the final places ofN . LetN be the set of all workflow nets, ϕ∗ ⊆ N×N . Let
R be the set of all construction rules. We define (N,N ′) ∈ ϕ∗ ⇔ ∃R ∈ R : (N,N ′) ∈
ϕR ∨ ∃N ′′ ∈ N ,∃R ∈ R : (N,N ′′) ∈ ϕR ∧ (N ′′, N ′) ∈ ϕ∗.

Our approach for generating workflow nets has three determinants, or generation
parameters: construction rules, probabilities of applying the rules, and the total number
of times the construction rules are used per net, which is the stopping criterion and is
called size (of the net) in this paper. We assume a Poisson distribution for the size, and
take a random number as the size of a net accordingly.

Generation starts with one single place. Initially, the only applicable rule is the
place refinement rule that results in the generation of the workflow net consisting of the
initial place and the final place connected by one transition. In every subsequent step,
we select a rule from the construction rules whose conditions hold, i.e. enabled rules.
In order to select a rule from all the enabled rules to extend the net, we take a uniform
distribution over all the enabled construction rules, e.g. all the enabled rules have the
same probability to be chosen. The generation stops when the size has been reached.
Thus, such a mechanism makes net generation a random process, and every particular
net has certain probability to be produced. We formally define a probability model for
our generation mechanism in Appendix A.

4 Discovery of Generation Parameters

Workflow nets are generated by using a set of generation parameters. Once the gener-
ation parameters have been specified, we are able to generate an arbitrarily large set of

Fig. 4: An example of workflow net reduction

workflow nets (i.e. a “collection”) where each net has certain probability to occur. We
consider a set of workflow nets that we encounter as a sample of its collection. Given a
sample of workflow nets, we would like to determine the collection to which the sample
belongs by estimating the generation parameters of the collection from the sample nets.
We call such an estimation procedure generation parameter mining.

To derive the generation parameters from a sample of nets, in our estimation pro-
cedure we employ a reduction process according to the construction rules R1, . . . , R9.
During reduction, in each step we apply a construction rule (in the inverse direction) as
a reduction rule to reduce a net until we reach the initial net, which is a single place (see
Section 3). We require that after each reduction the reduced net remains a workflow net.
During reduction we apply the rules in the following order:

Step 1 Keep applying the refinement rules (R1, R2) to reduce a net until the net cannot be reduced
any further by the refinement rules, then go to Step 2.

Step 2 Apply the duplication rules (R4, R5) to reduce the net. After one successful reduction
either by R4 or by R5 go back to Step 1. If both rules cannot reduce the net, go to Step 3.

Step 3 Apply the loop addition rule (R3) to reduce the net. If the loop addition rule successfully
reduces the net, then go back to Step 1. Otherwise go to Step 4.

Step 4 Apply the bridge rules (R7, R8, R9) to reduce the net. After one successful reduction by
any bridge rule go back to Step 1. If none of the bridge rules can reduce the net, terminate.

Figure 4 displays an example of such a reduction process. During reduction we
record the number of times we use each rule. We can see which rules were used at least
once and for each applied rule we compute the overall probability of its application. In
this way we estimate the generation parameters.

Estimation of characteristics One of the reasons we consider collections of process
models is because we want to determine characteristic properties of a collection based

Fig. 5: Procedure of estimating characteristics of an unknown collection

on its sample. Of course, it can be done on the sample directly, using available sta-
tistical methods. Typically the larger the sample size, the more accurate the collection
characteristics can be estimated. If the sample size is not big enough, the characteris-
tic estimations may not accurately reflect those of the whole collection. One way to
boost accuracy is to increase the sample size. In our case, for any unknown collection,
we estimate the generation parameters from a sample using the approach introduced in
the early part of this section. Once we obtain these parameters, we can generate arbi-
trarily large samples. Consequently, based on the law of large numbers and the central
limit theorem, we can estimate the characteristics of the original collection with any
precision. This approach is illustrated in Fig. 5.

We tested our approach focusing on the following characteristics of a workflow net:
1) number of nodes, 2) average fanin and fanout, 3) length of the longest path, 4) length
of the shortest path, 5) soundness probability, 6) deadlock probability, and 7) average
number of strongly connected components. We compare the estimations with respect
to their 1) mean, 2) standard deviation, and 3) confidence interval of the mean over the
collection. Confidence interval of the mean is calculated as [Y − t(α2 ,N−1)

s√
N
, Y +

t(α2 ,N−1)
s√
N
], where Y is the sample mean, s is the sample standard deviation, N is

the sample size, α is the desired significance level, t(α2 ,N−1) is the upper critical value
of the t-distribution with N − 1 degrees of freedom.

5 Evaluation of the Estimation Quality

We tested our approach performing a series of experiments on collections of workflow
nets generated as described in Section 3 using our plug-in to the ProM toolset [3]. To
measure the quality of the generated collections, we considered various metrics. For the
sake of space, we report the results on two sample metrics: the length of the longest
path and the soundness probability.

Quality of the estimations of generation parameters We generated a collection of
100 workflow nets with a set of chosen generation parameters. We treat this collec-
tion as our original collection. Note that this original collection itself is a sample of
the entire collection determined by the original generation parameters. We divided the
original collection into 20 samples, 5 nets per sample. On each sample, we estimated
the generation parameters and thus obtained 20 sets of the generation parameters. Note
that in practice we only have one sample, from which we mine the generation param-
eters. In this test we used 20 samples only for the purposes of testing. Fig. 6 lists the

results of the original generation parameters (used to generate the original collection)
and the estimated generation parameters (we consider the transition refinement rule and
the place refinement rule together as they both generate sequential structures).

Probability of Probability of Probability of Size
R1 and R2 R5 R4 mean

original parameters 0.60 0.20 0.20 200

parameters’ estimations 1 0.58 0.21 0.22 201
parameters’ estimations 2 0.63 0.18 0.19 194
parameters’ estimations 3 0.61 0.21 0.19 209
parameters’ estimations 4 0.61 0.20 0.20 203
parameters’ estimations 5 0.59 0.20 0.21 206

...
...

...
...

...
parameters’ estimations 20 0.60 0.20 0.20 207

Avg. 0.60 0.20 0.20 201
Std.Dev. 0.0162 0.0168 0.0105 8.6601

Fig. 6: Original generation parameters and their estimations
on samples

According to Fig. 6,
the original construction
rules and their probabil-
ities are 60% for both
the transition refinement
rule and the place refine-
ment rule, and 20% for
the transition duplication
rule, the place duplica-
tion rule and the mean
value of size. The stop-
ping criterion of net gen-
eration is 200. From each
sample, we can always
mine exactly the same
construction rules as the
original rules. On average, the probabilities of the construction rules estimated on all 20
samples are: 60% for both the transition refinement rule and the place refinement rule,
20% for the transition duplication rule, 20% for the place duplication rule. Compared
against the probabilities of the original construction rules, we have got exactly the same
probabilities as estimations. The average of the estimated mean value of size is 201,
and this result is very close to the original value 200. Consequently, we succeeded in
mining the generation parameters by using our generation parameter mining algorithm.

Distribution of the length of the longest path In this test we used the same collection
of 100 workflow nets generated in Section 5, and treated it as the original collection.
Using each set of the generation parameters’ estimations (see Section 5), we generated
a new collection of 100 workflow nets using our generation approach. Thus we gen-
erated 20 new collections. We used the generated collections to represent the original
collection. In order to measure the quality of the generated collections, we considered
the length of the longest path (LLP), which is a structural property of workflow nets, as
our metric in this experiment. In a workflow net the longest path is a path between the
initial place and the final place such that the total number of transitions on this path is
maximized discarding loops. The LLP is the number of transitions on the path.

Figure 7 displays the histograms of the LLP in the original collection, one of the
samples and a collection generated with the generation parameters computed on this
sample. The figure also gives the scatter plot that shows that the correlation between
the number of nodes and the LLP in the original collection is very weak. According
to our experiment, it is difficult to find a strong estimator for the LLP, so we cannot
compute the LLP based on another characteristic. We take the number of nodes as an
example here. From the correlation plot we can observe that there is no strong correla-
tion between the number of nodes and the LLP. Hence we cannot build a good model

(a) Histogram of the LLP distribu-
tion in the original collection

(b) Scatter plot relating the number
of nodes and LLP in the nets of the
original collection

(c) Histogram of the LLP distribu-
tion in the generated collection

(d) Histogram of the LLP distribu-
tion in the sample

Fig. 7: Evaluation results for the LLP metric

to compute the LLP from the number of nodes. From Fig. 7 we can observe that the
histogram of the generated collection produces a distribution of LLP similar to the dis-
tribution that can be derived from the histogram of the original collection, while the
histogram of the sample indicates a completely different distribution.

We further computed the 80th and the 90th percentiles (which are the values below
which 80%, resp., 90% of the observations are found) for the LLP in the original col-
lection and in all the collections generated. The results are listed in Fig. 8. The 80th and
the 90th percentiles of the original collection are 102.00, resp., 107.90. On average, the
80th and the 90th percentiles of all the generated collections are 101.69, resp., 108.28.

The quality of the generated collections can be statistically quantified via hypothesis
testing. For the results of 80th percentile, if µGC denotes the average 80th percentile
of all the generated collections, we are interested in testing H0 : µGC = 102 against
the alternative H1 : µGC 6= 102. The Shapiro-Wilk test (see e.g. [9]) was performed to
show that we can assume a normal distribution for the data. We performed one-sample
t test (see e.g. [9]) for a significance level α = 0.05.

80% percentile 90% percentile

original collection 102.00 107.90

generated collection 1 95.00 101.00

generated collection 2 103.80 112.00

generated collection 3 108.80 112.00

generated collection 4 104.80 111.90

generated collection 5 103.40 107.00

.

.

.
.
.
.

.

.

.

generated collection 20 100.80 108.00

Avg. 101.69 108.28

Std.Dev. 6.88 6.51

Fig. 8: 80th and 90th percentiles of
LLP in the original collection and in
all the generated collections

The outcome of the testing is t(19) =
−0.201, p = 0.842. As the p-value is greater
than α (0.842 � 0.05), H0 is retained. Con-
sequently, we can conclude that the difference
between the 80th percentile of the original
collection and the average 80th percentile of
all the generated collections is statistically in-
significant. For the results of 90th percentile,
we also performed the hypothesis testing, and
reached the conclusion that the difference be-
tween the 90th percentile of the original col-
lection and the average 90th percentile of all
the generated collections is also statistically in-
significant. Consequently, the generated collec-
tions accurately represent the original collec-
tion along the LLP. On the other hand, from the
samples we cannot even compute the 90th percentile (recall that there are only 5 nets in
each sample).

Soundness Probability

original collection 46%

sample 1 20%

generated collection 1 50%

sample 2 60%

generated collection 2 44%

sample 3 20%

generated collection 3 42%

.

.

.
.
.
.

sample 10 60%

generated collection 10 46%

Avg. of samples 46%

Std.Dev. of samples 18.97

Avg. of generated collections 45.8%

Std.Dev. of generated collections 4.57

Fig. 9: Soundness probability

Soundness probability In this experiment we
considered soundness. Using a set of original
generation parameters (different from the ones
used in Section 5), we generated a collection of
50 workflow nets. We included the place bridge
rule in the original generation parameters to in-
troduce unsoundness (recall that bridge rules
breaks soundness as illustrated in Section 3.1).
Otherwise the nets would all be sound by con-
struction. We regarded this collection as the
original collection, and divided it into 10 sam-
ples, 5 nets per sample. From each sample we
estimated the generation parameters from which
we generated a new collection of 50 workflow
nets. In order to measure the quality of the col-
lections generated, we tested the probability of
soundness, which is a behavioral property of
workflow nets.

Figure 9 presents the results of soundness probability of the original collections, all
samples and all generated collections. Accordingly, in the original collection 46% of
nets are sound. On average, soundness probability of samples is 46%, and soundness
probability of the generated collections is 45.8%.

Again, the quality of the generated collections was statistically quantified via hy-
pothesis testing. If µGC denotes the average soundness probability of all the generated
collections, then we test H0 : µGC = 46% against the alternative H1 : µGC 6= 46%.
The Shapiro-Wilk test was performed to show that we can assume a normal distribution
for the data. We performed one-sample t test for a significance level α = 0.05. The

outcome of the testing was t(9) = −0.139, p = 0.893. As the p-value is greater than
α (0.893 � 0.05), H0 is retained. Consequently, we can conclude that the difference
between soundness probability of the original collection and the average soundness
probability of all the generated collections is statistically insignificant.

The standard deviation of the samples is 18.97%, and the standard deviation of the
generated collections is 4.57%. Due to high standard deviation the soundness proba-
bility of each sample is far from the average result 46%, and due to a low standard
deviation the soundness probability of each generated collection is close to the aver-
age result 45.8%. For instance, the soundness probability of sample 1 is 20% and the
soundness probability of the generated collection 1 is 50%, the soundness probability of
sample 2 is 60% and the soundness probability of generated collection 2 is 44%, etc. As
the soundness probability of the original collections is 46%, clearly each generated col-
lection gives a much more accurate estimation. Consequently, the generated collections
successfully represent the original collection along the soundness probability.

We repeated the same experiments along other metrics (i.e. average fanin and
fanout, length of the shortest path, deadlock probability, and average number of strongly
connected components) obtaining similar results. Hence we conclude that the gener-
ated model collections closely resemble the characteristics of the original collection, of
which only a small, casually extracted sample was available.

6 Evaluation with Industry Models

In this series of tests, we tested our approach with process models from practice. We
randomly extracted 50 process models from a collection of 200 models of a manu-
facturing company, which we acquired from the AProMoRe process model repository
[8]. We assumed that these models could be generated by the generation mechanism in
Section 3. We treated this collection as our original collection, and divided it into ten
samples, five nets per sample. For each sample, we derived an estimation of the genera-
tion parameters and generated a collection of 200 nets based on these parameters. Thus
we had ten generated collections, each having 200 nets. In order to test the quality of the
generated collections, we considered various characteristics of workflow nets as met-
rics. Below, we report the results on the estimations of the generation parameters and
two metrics: length of the shortest path (structural metric) and soundness probability
(behavioral metric).

Estimation of generation parameters Table 1 lists the generation parameters esti-
mated on each sample. Here we consider the transition refinement rule and the place
refinement rule together as they both generate sequential structures.

In this experiment, models were obtained from practice, so we did not know the
original generation parameters (the generation parameters used to generate the original
collection). In Table 1, the standard deviation of each generation parameter (bottom
row in Table 1) is actually large. This is because models in different samples vary with
respect to size (e.g. number of nodes) and structure. For instance, the means of size of
sample 1 and sample 2 are 32 and 14, respectively, which means models in sample 1
are generally larger (e.g. in terms of number of nodes) than models in sample 2. There

Table 1: Estimations of generation parameters from 10 samples of process models from
practice

Probability of Probability of Probability of Probability of Probability of Size
R1 and R2 R5 R4 R3 R8 mean

1 0.69 0.22 0.01 0.03 0.06 32
2 0.73 0.20 0.01 0.06 0 14
3 0.84 0.10 0.05 0.02 0 13
4 0.85 0.08 0.06 0.02 0 13
5 0.85 0.12 0 0.03 0 15
6 0.72 0.04 0.06 0.09 0.09 14
7 0.72 0.11 0 0.07 0.1 12
8 0.74 0.18 0 0.02 0.06 17
9 0.76 0.02 0 0.08 0.15 12
10 0.73 0.12 0.07 0.03 0.05 23

Avg. 0.76 0.12 0.03 0.05 0.05 17
Std.Dev. 0.06 0.07 0.03 0.03 0.05 6.35

is no parallel structure in models in (e.g.) sample 5, as the place duplication rule was
not used in generation (the probability of the place duplication rule is estimated as 0).

LSP

original collection 7.14

generated collection 1 7.34
generated collection 2 6.60
generated collection 3 6.31

...
...

generated collection 10 7.98

Avg. 7.29
Std.Dev. 1.46

Fig. 10: Average LSP

Distribution of the length of the shortest path In this exper-
iment we considered the length of the shortest path (LSP). In
a workflow net the shortest path is a path between the initial
place and the final place such that the total number of transi-
tions on this path is minimized. LSP is the number of transi-
tions on the path. Fig. 10 lists the results of the LSP in the orig-
inal collection and in all the generated collections. According
to Fig. 10, the average LSP in the original collection is 7.14.
On average, the LSP in all the generated collections is 7.29.

The quality of the generated collections was statistically
quantified via hypothesis testing. If µGC denotes the average
LSP of all the generated collections, then we are interested in testing H0 : µGC = 7.14
against the alternativeH1 : µGC 6= 7.14. Shapiro-Wilk test was performed to show that
we can assume a normal distribution for the data. We performed one-sample t test for a
significance level α = 0.05. The outcome of the hypothesis testing is t(9) = 0.332, p =
0.748. As p-value is greater than α (0.748 � 0.05), H0 is retained. Consequently, we
can conclude that the difference between the average LSP of the original collection and
the average LSP of all the generated collections is statistically insignificant.

Let us zoom in one sample to measure the quality of our approach. Figure 11 dis-
plays the mean and the 95% confidence interval for the mean of LSP for the original
collection, sample 1 and the generated collection 1.

Fig. 11: Mean and 95% confidence
interval of the LSP for original col-
lection, sample 1 and generated col-
lection 1

The mean of sample 1 is 6. It falls outside
the 95% confidence interval for the mean of the
original collection, which ranges from 6.42 to
7.86. This confidence interval means that we are
95% sure that the real mean of the original col-
lection falls between 6.42 and 7.86. Thus it is
clear that we can poorly estimate this character-
istic of the original collection from this sample.
On the other hand, the mean of the generated col-
lection 1 is 7.34. This value falls inside the 95%
confidence interval for the mean of the original
collection, and is also very close to the mean of
the original collection, which is 7.14. The 95%
confidence intervals for the mean of the original
collection and that of the generated collection 1 almost fully overlap. Consequently, the
generated collection 1 very well represents the original collection along LSP.

Soundness probability In this experiment we computed the probability of soundness
for models in the 10 collections that we generated. Figure 12 lists the results of the
soundness probability in the original collection and in all the generated collections. The
results show that all nets in the original collection are sound as the soundness probability
of the original collection was 100% (this implies that all samples from this collection
are 100% sound too). The soundness probabilities of the generated collections 1, 6, and
10 are 96%, 89%, and 85%, respectively (note that our net generation technique do
preserve soundness in general), and the rest of the generated collections are all 100%
sound. On average the soundness probability of all generated collections is 97%.

The quality of the generated collections was statistically quantified via hypoth-
esis testing. If µGC denotes the average soundness probability of all the generated
collections, we are interested in testing H0 : µGC = 100% against the alternative
H1 : µGC 6= 100%. The Shapiro-Wilk test was performed to show that we can-
not assume a normal distribution for the data in this case. Thus we performed the
Wilcoxon signed-rank test (see e.g. [9]), which is a non-parametric test, for a signifi-
cance level α = 0.05. The resulting p-value is 0.109. As the p-value is greater than
α (0.109 � 0.05), H0 is retained. Consequently, we can conclude that the difference
between the soundness probability of the original collection and the average soundness
probability of all the generated collections is statistically insignificant. We can thus
deduct that the generated collections successfully represent the original collection also
along soundness.

As shown in Table 1, we estimated the generation parameters (probability distribu-
tion for Murata’s rules) on samples 2, 3, 4, 5. The generated collections 2, 3, 4, 5 consist
of Jackson nets only, and these nets are (generalized) sound (see Section 3). To gen-
erate samples 7, 8, 9, both the transition bridge rule and Murata’s rules without place
duplication rule are needed. These rules allow to generate state machine workflow nets
only (i.e. workflow nets that do not allow for parallelism), as none of the rules can in-

troduce a parallel structure. Because state machine workflow nets are always sound, the
generated collections 7, 8, 9 are 100% sound.

collection probability of soundness

original collection 1

generated collection 1 0.96
generated collection 2 1
generated collection 3 1
generated collection 4 1
generated collection 5 1
generated collection 6 0.89
generated collection 7 1
generated collection 8 1
generated collection 9 1

generated collection 10 0.85

Avg. 0.97
Std.Dev. 0.05

Fig. 12: Soundness probability of
original collection (from practice)
and generated collections

To reduce nets from samples 1, 6, 10, both
transition bridge rules and Murata’s rules are
necessary. Since the soundness property can be
destroyed by the bridge rules (see Section 3),
soundness is not guaranteed for the generated
collections 1, 6, 10. Remarkably, in spite of the
source of unsoundness in the form of the bridge
rules, the soundness probability on the gener-
ated collections 1, 6 and 10 is still very high.

The results conducted with real-life process
models confirm the results we obtained with
the dataset that we generated artificially. From
these results we can already state with some
confidence that our generated model collections
can closely reproduce the characteristics of a
given collection, when only a small sample is
available. Thus, the generated models can be
used as benchmarks to test algorithms that op-
erate on process models, and produce statistically valid results.

7 Conclusion

We proposed an approach called generation parameter mining to discover a collection
of process models based on a sample from that collection. We assume that nets can
be generated by certain generation parameters by stepwise refinement. Such generation
parameters consist of a set of defined construction rules, probabilities of applying the
rules, and net size. Thus, we mine these generation parameters by reducing the sample
nets using the construction rules in the inverse direction. Once we obtain the generation
parameters, we can use them to determine the whole collection of the given sample. To
the best of our knowledge, there is no similar research to our work in this field yet.

There are a number of good reasons for discovering whole collections from samples.
First, it is very difficult to estimate the characteristics of a collection accurately with a
small sample size. Hence if we can identify the entire population, we are able to estimate
the characteristics of that population at any level of accuracy by generating as many
models as necessary from the population. Second, given that we can build arbitrarily
large collections which faithfully reproduce the features of the original collection, our
generated models can be used for benchmarking purposes.

We extensively tested our approach using both process models generated by our
software tool and process models from practice. The results indicate that the generation
parameters of an original collection can be successfully estimated on a small sample of
the collection. In order to test the quality of the generated collections, we considered
various process model characteristics. The results of these latter tests show that the

generated collections accurately represent the original collection, whereas the original
collection is poorly represented by the samples.

There are many interesting questions to explore in the future. We will further test
our approach on more model collections from practice, and we will consider other char-
acteristics e.g. deadlock probability, number of strongly connected components, max-
imal number of concurrent transitions. As we can get the same net by reducing a net
using different rules, this may cause incorrect generation parameters from estimation.
This issue becomes more problematic if bridge rules are involved. For instance, bridge
rules break soundness: if bridge rules and their probabilities are estimated wrongly, the
soundness probability of the population will be incorrectly estimated. Therefore, we
intend to improve our approach by refining the rule mining phase.

Acknowledgments This research is partly funded by the NICTA Queensland Lab.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 2001.

2. G. Berthelot. Transformations and Decompositions of Nets. In Advances in Petri Nets,
volume 254, pages 360–376. Springer, 1987.

3. B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P.
van der Aalst. The ProM Framework: A New Era in Process Mining Tool Support. In
Applications and Theory of Petri Nets, volume 3536, pages 444–454. Springer, 2005.

4. R. Goud, K. van Hee, R.D.J. Post, and J.M.E.M. van der Werf. Petriweb: A Repository for
Petri Nets. In Proc. of ICATPN, volume 4024 of Lecture Notes in Computer Science, pages
411–420. Springer, 2006.

5. K.M. van Hee, J. Hidders, G. Houben, J. Paredaens, and P. Thiran. On the Relationship be-
tween Workflow Models and Document Types. Information Systems, 34(1):178–208, 2008.

6. K.M. van Hee and Z. Liu. Generating Benchmarks by Random Stepwise Refinement of Petri
Nets. In Proc. of APNOC, pages 30–44, 2010.

7. K.M. van Hee, N. Sidorova, and M. Voorhoeve. Generalised Soundness of Workflow Nets
Is Decidable. In Proc. of ICATPN, Bologna, Italy, 2004.

8. M. La Rosa, H.A. Reijers, W.M.P.van der Aalst, R.M. Dijkman, J. Mendling, M. Dumas, and
L. Garcia-Banuelos. AProMoRe: An Advanced Process Model Repository. Expert Systems
with Applications, 38(6), 2011.

9. D.C. Montgomery and G.C. Runger. Applied Statistics and Probability for Engineers. Wiley
& Sons, 5 edition, 2011.

10. M. La Rosa, M. Dumas R. Uba, and R. Dijkman. Merging business process models. In Proc.
of CoopIS, pages 96–113. Springer, 2010.

11. I. Suzuki and T. Murata. A Method for Stepwise Refinement and Abstraction of Petri Nets.
Journal of Computer and System Sciences, 27(1):51–76, 1983.

12. C.F.J. Wu. Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis.
Annals of Statistics, 14(4):1261–1295, 1986.

A Probability space for stochastic collections of nets

We construct a probability space (Ω,F,P), where Ω is the set of possible outcomes, F ⊆ 2Ω is a σ-algebra
of subsets of Ω called events, and P is a probability measure on F. We define random variables K, Ni, Xi
on this space.

N is the set of all Petri nets. R is the set of construction rules. ϕ is a function ϕ : R → 2N×N such
that for r ∈ R : ϕr ⊆ N × N , meaning (n1, n2) ∈ ϕr iff n2 can be derived from n1 using rule r.
Let q : N × R × N → [0, 1] such that

∑
{m|(n,m)∈ϕr}

qn,r,m = 1, meaning qn,r,m is the probability

that m is the result of applying rule r to net n, if it is possible. Let ψ ⊆ N × R, meaning (n, r) ∈ ψ iff
rule r is applicable for n. Let p : N × R → [0, 1] such that

∑
{r|(n,r)∈ψ}

pn,r = 1, meaning pn,r is the

probability that rule r is chosen to extend net n, if it is possible. Let s : N → [0, 1], such that
∞∑
k=0

sk = 1,

the construction step distribution.
We define the probability space (Ω,F,P) and a set of of random variables. LetΩ = (N ×R)∗×N (it

is easy to prove thatΩ is countable), and for ω ∈ Ω with ω = (n0, r0, n1, r1, . . . , nk) we define l(ω) = k.
F is the subset of 2Ω containing all countable subsets (it is not difficult to prove that this is a σ-field).

We define P for singletons in F. Let l(ω) = k, P[{ω}] = (

k−1∏
i=0

pni,ri · qni,ri,ni+1)sk . Since Ω

is countable we have P[Ω] =
∑
ω∈Ω

P[{ω}] = 1. The random variable K : Ω → N is the stopping rule

K(ω) = l(ω).
The random variable Ni : Ω → N , i = 0, 1, 2, . . . and Xi : Ω → R, i = 0, 1, 2, . . . are defined

by Ni(ω) = ni if l(ω) ≥ i, and =⊥ otherwise. Xi(ω) = ri if l(ω) ≥ i + 1, and =⊥ otherwise, where
ω = (n0, r0, n1, r1, . . . , nk), and ⊥ is a value not occurring inR and N . Note Ni(ω) 6=⊥→ K(ω) ≥ i

and Xi(ω) 6=⊥→ K(ω) ≥ i+ 1.
We introduce an auxiliary function Q : N × N×N → [0, 1].

Q(n0, i, n) =
∑

r0n1...ri−1

pn0,r0 · qn0,r0,n1 · . . . · qni−1,ri−1,n. The following statements hold:

– Q(n0,i+1,n′) =
∑
r,n

Q(n0, i, n) · pn,r · qn,r,n′ , and this summation is over a finite set since

{n|(n, n′) ∈ ϕr} is finite for all r ∈ R.

– P[Ni = n|N0 = n0] = Q(n0, i, n)

∞∑
k=i

sk .

– P[NK = n|N0 = n0] =

∞∑
k=0

Q(n0, k, n)·sk . NoteNK is the randomly selected net in the collection.

– Then we have constructed a new probability space over the Petri net colletion: (N ,R, Π), where R is
the σ-field of all countable subsets ofN andΠ is the probability measure defined by singletons, n ∈ N
Π(n) = P[Nk = n|N0 = n0].

In practice we let pn,r = 1
|{r∈R|(n,r)∈ψ}| , i.e. all possible rules have the same probability, we let

qn,r,m = 1
|{m|(n,m)∈ϕr}|

, i.e. all possible extensions have the same probability, and we let sk = e−λ · λ
k

k!
,

so stopping is based on Poisson distribution.

