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Abstract

To manage the size and complexity of business process models, the use of subpro-
cesses is widely advocated. In this paper, we provide a review of work with respect
to the modularization of business process models, which points at a lack of solid ev-
idence for its benefits and the absence of clear criteria for identifying subprocesses.
In response to this, we conducted an empirical investigation to test the effectiveness
of using subprocesses in real-life process models. Our results suggest that modular-
ization may foster the understanding of a complex business process model by its
“information hiding” quality. Furthermore, we explored different categories of cri-
teria that can be used to automatically derive process fragments that seem suitable
to capture as subprocesses. From this exploration, approaches that consider the
connectedness of subprocesses seem most attractive to pursue. This conclusion can
be used to develop tool support for the modularization of business process models.

Key words: Business Process Modeling, Modularity, Empirical test, Automated
discovery

1 Introduction

In the design and production of complex technology, modularity is recognized
as a key principle. For example, it has been argued that the computer industry
has dramatically increased its rate of innovation by adopting modular design
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[1]. In contexts such as these, modularity is commonly interpreted as the design
principle of having a complex system composed from smaller subsystems that
can be managed independently, yet function together as a whole [2].

Modularization is also applied in business process models using subprocesses.
Most popular process modeling techniques support this concept, e.g. UML
Activity Diagrams [3], EPCs [4], BPMN [5], and YAWL [6]. Various advan-
tages are attributed to the use of subprocesses in process models, in particular
when they grow large. At build-time, subprocesses support a modeling style of
stepwise task refinement, stimulate reuse of process models, and potentially
speed up the (concurrent) development of the overall process model [7,8]. At
run-time, i.e. when a process model is enacted by an automated system, sub-
processes allow for scaling advantages: Each subprocess, for example, may be
executed on a different workflow server [8]. Finally, when a process model is
used to facilitate the understanding of complex business processes among var-
ious stakeholders, subprocesses are supposed to ease the understanding of the
model [9,10]. The latter advantage is particularly noteworthy, because in most
business applications it is the primary purpose of a process model to act as a
means of communication [11,12].

On the the other hand, the way that modularity is currently utilized in mod-
eling practice raises some questions about its actual benefits. First of all, there
are no objective criteria to establish the right level of granularity for a sub-
process. Accordingly, there is no absolute guideline if a particular subprocess
should be on level X or X + 1 in a model hierarchy [13]. Neither is there a
unique way to modularize a process model [13]. As a consequence, modular-
ity is often introduced in an ad-hoc fashion. Furthermore, there are clearly
drawbacks when the process logic is fragmented across models. In particular,
it “becomes confusing, less visible, and tracking [...] paths is tiring” [14] if a
subprocess is decomposed in further subprocesses. The fact that the seman-
tic check in ARIS Toolset mainly addresses consistency issues between events
in the subprocess and around the refined function illustrates the seriousness
of this problem. Finally, even if modularization is useful for maintenance pur-
poses, it is questionable whether advantages materialize in practice since many
organizations fail to keep their models up to date [15].

In this paper, our interest is with two research problems. The first problem
is that solid indications are missing for the benefits of modularization, i.e.
the use of subprocesses, in process models. Our interest is to discover whether
subprocesses can be useful to improve the understandability of real-life process
models. For this issue, we will build on an empirical investigation of two com-
plex process models from practice, both in modular and “flat” form, and their
assessment by a group of 28 experienced process modelers. The contribution
of our work is to provide tangible support for the usefulness of subprocesses
in process models. We also provide an insight into the underlying causes for
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this effect.

The second problem we address is the lack of dedicated approaches to support
process modelers with modularizing a given process model into subprocesses.
We explore three attractive directions for the automated discovery of subpro-
cesses, apply them to a real and complex process model, and evaluate the re-
sults against the modularization that experienced process modelers provided
for the same model. Our contribution in this respect consists of providing
concrete indications for the further development of automated discovery algo-
rithms.

In the presentation of our contributions, we will build on some of our ear-
lier work [16]. In comparison with this publication, we significantly extended
the presentation and discussion of the experiment that was conducted to in-
vestigate the effect of subprocess usage and updated the review of related
literature. Beyond that, the exploration of automated discovery algorithms
that is included in the current paper is completely new.

Against this background, the structure of this paper is as follows. In the next
section, we will give a broader background for the concept of modularity, in
particular with respect to process modeling. In Section 3 we will present the
set up of our empirical test along with its results and a discussion. Section 4
presents our proposals for automatic support for subprocess discovery with a
corresponding evaluation. Section ?? discusses related work before Section 5
concludes the paper.

2 Theoretical Background

In this section we discuss the theoretical background of our research. In Sec-
tion 2.1 we present the essential concepts related to modularity in concep-
tual modeling. Section 2.2 revisits contributions on the modularity of process
models. Section 2.3 takes a cognitive research perspective on process model
modularity, and derives hypotheses on its costs and benefits.

2.1 Modularity in System Design and Conceptual Modeling

Often, the terms modularity, decomposability, and hierarchy are used inter-
changeably. However, according to [2], a modular system is not automatically
decomposable in the sense that the modules can be easily managed indepen-
dently. After all, it is possible to break a system into modules whose workings
remain highly interdependent with the internal workings of other modules.
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Furthermore, as Parnas points out in his seminal paper on “information hid-
ing”, a modular system is not necessarily hierarchical [17]. To clarify these
notions, consider Figure 2. In this figure, three abstract modular designs can

Figure 1. Examples of modular designs

be seen. In each of these, a module is represented as a rectangle and each
arrow represents a “uses” relation between two modules. Design (a) is hierar-
chical, since the dependencies form a partial ordering. This is, however, not
the case for design (b): A cyclic dependency exists between a subset of the
modules. Such a design is called non-hierarchical. Furthermore, designs (a)
and (b) may well be decomposable, considering the limited number of depen-
dencies between the modules. In contrast, this is less obvious for design (c)
with its numerous interdependencies. Note that the hierarchy notion can be
mathematically pinned down, where decomposability refers to a qualitative
notion. For this paper we consider the general phenomenon of “modularity”
as the main subject of interest.

In many settings, “the real issue is normally not to be modular but how to be
modular” [2]. Modular systems are much more difficult to design than com-
parable interconnected systems [1]. Beyond that, problems with incomplete
or imperfect modularization tend to appear only when the modules come to-
gether and work poorly as an integrated whole. It has been argued that many
of the most attractive and durable systems are developed through an “unself-
conscious” design process [18]. In such a design process, used design rules are
not explicit; inconsistencies and interdependencies are revealed by trial and
error. However, it is by no means obvious that unselfconscious design must
always, or even usually, result in modularity [2].

Quality criteria to consciously decompose a system into modules have been
discussed by Wand and Weber on a general level [19,20]. The authors identify
five criteria. The first three are absolute criteria that are either met or not
and focus on the content of the modular model, not its structure. Minimality
requires that there is no redundant state information in the modular model. In
data models this basically matches normalization requirements. Determinism
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requires that a state change is clearly identified to be triggered by an internal
or an external event. If that is not the case the behavior of a module can only be
understood by knowing the state of another subsystem. Losslessness demands
that emergent properties are not lost in a modularization. Furthermore, the
two criteria coupling and cohesion should be optimized, cf. [21]. Coupling
should be minimal such that the sum of inputs of each subsystem is less or
equal to the sum of inputs in any other modularization. Cohesion should be
maximal such that all output affected by input variables are contained in the
same set, and adding another output does not extend the set of input variables
on which they depend.

Wand and Weber’s criteria had a strong influence on the object-oriented design
metrics proposed by Chidamber and Kemerer [22]. The usefulness of the five
criteria has been demonstrated for UML class diagrams and state charts in an
experimental setting [23].

2.2 Modularization in Process Models

The area of related research in the context of process models is huge cover-
ing works on process modularization, e.g. [24,25,26], process inheritance, e.g.
[27,28], and reduction rules, e.g. [29,30,31]. Since the latter two categories are
mainly utilized for the purpose of process model analysis, i.e. the decomposi-
tion is non-persistent, we will focus on the first category. Furthermore, we do
not consider modular design of process-aware information systems such as in
[32,33]. In the context of process model modularization, three aspects can be
distinguished: modularization operations, modularization prerequisites, and
modularization selection.

Modularization Operations: The idea that basic operators should facili-
tate modularization was already proposed in the 1980s for data flow dia-
grams [24]. Refinement operations have also been defined for Workflow Nets
[34]. Recently, the ability to extract a subprocess from a process model has
been described as a change pattern for process-aware information systems
[26]. This pattern must be implemented reflecting the syntactic require-
ments of the modeling language. In ARIS there are two ways to extract a
subprocess: by modularization (refining function with subprocess) and by
segmentation (cutting a model in different parts) [13]. Both these options
are tailored to yield syntactically correct EPCs.

Modularization Prerequisites: There are some recommendations regard-
ing when a process model should be considered for modularization. Some of
the practitioners books state that modularization should be introduced in
a model with more than 5–15 [35] or 5–7 activities [10], yet without giving
any support for this rule. Recently, it has been recommended based on em-
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pirical findings that process models with more than 50 elements should be
decomposed [36]. Depending on the process modeling language the amount
of activities can vary for 50 elements, e.g. EPCs use connectors for routing
and events to separate functions while YAWL essentially only uses tasks.
Still, up to now no objective criteria has been proposed for identifying which
subprocess should be on which level in the model hierarchy [13].

Modularization Selection: There are some guidelines on how to select parts
of process models for modularization. Good candidates for subprocesses are
fragments of a model that are components with a single input and a single
output control flow arc [37,25,38]. Furthermore, long and thin process mod-
els should be preferred to square models [13, p.278]. This argument points
to the potential of metrics to guide the modularization. The idea here would
be to use quality metrics like the ones proposed in [36,39] to assess which
modularization should be preferred. An application of metrics to compare
design alternatives is reported in [40]. Yet, there is no dedicated approach
to guide modularization based on metrics.

Overall, the main focus of research on process modularization is of a con-
ceptual nature. Clearly, there are no objective and explicit guidelines that
modelers in practice can rely on. The aim of our research as reported in the
following sections is to contribute to a better understanding of the effects of
modularization as a stepping stone towards such guidelines.

2.3 Cost and Benefit of Process Model Modularity

The modularity of a process model can have two major effects in terms of
understanding: a benefit of information hiding and navigation costs. We dis-
cuss them based on the Cognitive Dimensions Framework. This framework
covers a set of aspects that have empirically been proven to be significant for
the comprehension of computer programs and visual notations [41]. While the
framework has been developed for notations, we can also use it to discuss com-
prehension of models in general or any other information artifact. There are
two major findings that the framework builds upon: A representation always
emphasizes a certain information at the expense of another one, and there has
to be a fit between the mental task at hand and the notation [42,43]. The
implications of these insights for process models and their modularity can be
discussed along the lines of those cognitive dimensions that are relevant for
process model reading.

• Abstraction Gradient refers to the grouping capabilities of a notation. In a
single process model, there is no mechanism to group activities. Therefore,
flow languages are called abstraction-hating [41]. As a consequence, the
more complex the model gets the more difficult it becomes for the model
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reader to identify those parts that closely relate to one another. This fact
is the major motivation to decompose a large model into smaller ones, for
instance, by identifying subprocesses. The assumption with this operation
is that the modular process model provides a comprehension gain due to
information hiding.
• Hidden Dependencies refer to interdependencies that are not fully visible.

In modular process models such hidden dependencies might exist between
process model parts that are spread over different modules. This observation
points to the potential danger that a more fragmented process model could
imply a greater share of navigation costs, and therefore affect understanding.

Both these facts result in the hypothesis that subprocesses are likely to increase
understanding due to information hiding. This assumption is measurable in
terms of a suitable experimental design with understanding performance as
the dependent dimension. Yet, it is up until now not clear to which degree
additional costs in terms of navigating through different subprocesses might
actually counter-balance the performance gain. We will discuss these issues in
detail in the following section on our experimental design.

3 Experimental Design and Findings

This section presents an experimental design to test the effects of modular-
ity (Section 3.1) along with its findings (Section 3.2) and a discussion (Sec-
tion 3.3).

3.1 Research Design

In the previous sections we discussed that the ad-hoc way in which modularity
is currently introduced in modeling practice raises doubts about its benefits,
but that theoretical indications exist for the benefits of using subprocesses.
In developing a test for the presumed connection between modularity and
understanding, several challenges must be met.

First of all, the question is how to pursue results that have the potential to
provide insights that are meaningful, in the sense that they relate to the real-
life application of subprocesses. For example, it would be unsatisfactory to
test the effects of modularity in small or artificial process models. To achieve
a realistic background for our research, we set up a collaboration with Pallas
Athena Solutions 1 in the Netherlands, a specialized provider of BPM services.

1 http://www.pallas-athena.com
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In our cooperation with this company, we gathered real-life, complex models as
study objects. What is more, a large number of experienced process modelers
from this company participated in our investigation.

The second issue relates to the organization of an empirical test in a rigorous
manner. In lack of specific literature on empirical research with respect to
process modeling, we build on approaches and classifications used in the field of
software experimentation [44,45]. In particular, we use an experimental design
that is comparable to what was applied in a recent study to evaluate various
types of BPM technology [46]. To test the hypothesis we carried out a so-
called single factor experiment. In general, this design is suitable to investigate
the effects of one factor on a common response variable. This design also
allows to analyze variations of a factor: The factor levels. The response variable
is determined when the participants of the experiment (who are also called
subjects) apply the factor or factor levels to a particular object. The overall
approach in our experiment is visualized in Figure 2. We will address each of
the mentioned elements in our design in more detail now.

Participant 1

Participant n/2

Participant n/2+1

Participant n

Factor level: 
modularization 

present

Factor level: 
modularization 

absent

Process Model 
A with 

subprocesses

Process Model 
A without 

subprocesses

n participants 1 factor 2 objects

First Run

Participant 1

Participant n/2

Participant n/2+1

Participant n

Factor level: 
modularization 

absent

Factor level: 
modularization 

present

Process Model 
B without 

subprocesses

Process Model 
B with 

subprocesses

n participants 1 factor

Second Run

2 objects

Completion of first 
applied factor level

Overall experiment

Figure 2. Experiment design

Object. The basic objects that were evaluated by the participants in our test
were two process models taken from practice. The models were used in the
experiment both in their original form – displaying modularity – and in their
“flattened version” where modularity is completely removed. The flattening
involved the removal of all dependencies between model elements such that
they all arrived at the same level of abstraction. Note that for any particu-
lar process model the absence or presence of modularity does not affect the
business logic in a semantic sense.

The two process models were selected from a little over 80 process models
that were created and delivered by our partner organization for its clients.
We focused our search for suitable objects by the use of three criteria: (1) the

8



presence of modularity in the process model, (2) the size of the model, and
(3) access to the original creators of the model. The process models we looked
for needed to display modularity as consciously applied by the modeler to
deal with the complexity of a large model. We only considered models of more
than 100 tasks, which can be considered as very large using the process size
classification provided in [47]. Our line of reasoning here is that if modularity
does not help to understand very large models, it will not help to distinctively
understand smaller models either. Finally, we needed access to the modelers
of the model to validate questions on the content of the model.

From our search, four candidate models emerged. One of these models was
specifically developed for automated enactment and was not further consid-
ered. After all, the understandability of the model for human readers is gen-
erally not a prime issue in this context; the process model is automatically
interpreted. Of the remaining three, which were all developed for the support
of stakeholders in a process improvement project, the two process models were
selected that were most similar to each other in terms of process size, number
of subprocesses, and modularity depth. Both models had been modeled with
the Protos tool [48], of which the underlying technique is similar to Workflow
Nets [34]. The flattened versions of process models A and B can be seen in
Figures 3 and 4 respectively.

Model A describes the procedure in use by an organization that is responsi-
ble for granting driver’s licences. The process in question deals with clients
that cannot directly obtain their driver’s license because of physical or psy-
chological disabilities that can influence their driving. Model B captures how
a subcategory of unemployed citizens is coached and receives advice in finding
a job. Note that the labels in Figures 3 and 4 have been removed to protect
the confidentiality of the involved organizations; they were available to the
participants in our test.

Factor and factor levels. In our experiment, the use of modularity is the
considered factor, with factor levels “present” and “absent”. Note that we
deliberately collected real process models from practice already exhibiting
modularity and derived flattened versions from it, instead of doing it the
other way around. In this way, we could build on a real-life application of
modularity.

Response variable. The response variable in our experiment is the level of
understanding that the respondents display with respect to the process mod-
els, both in their modularized and flattened form. To measure the response
variable, a specific set of questions was developed for each of the two models
to be answered by the subjects. This approach is similar to the one we applied
in a previous study into model understandability [39]. An example question
for model A is: “If an AA-investigation is required, then a number of alterna-
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Figure 3. Flattened version of process model A

tive settlements is possible. How many of these settlements exist?”. For model
B an example question is: “If a client does not appear on an appointment,
is it always so that a new appointment is scheduled?”. The questions were
formulated in Dutch, the same language used by the creator of the modeler
to name model elements, and also being the native language for all involved
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Figure 4. Flattened version of process model B

participants. The model-specific questions were preceded by a general intro-
duction to the experiment, a specific explanation of each of the models, and
a number of general questions with respect to the participants’s background.
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Subjects. The participants in this experiment were 28 experienced consul-
tants from Pallas Athena. They were randomly assigned to the two groups
used in our set-up (block design). Each group was presented two models: One
model that displayed modularity and the other model in the flattened version.
This way each participant received two different processes and two different
styles. Participation in the experiment was voluntary; the single reward offered
for participation was access to the research results.

Instrumentation. The participants were provided with the process models
on paper, together with the questions; an alternative would have been to show
the models on a computer display, e.g. using the software that was used to
create the models. However, the involved company indicated that paper is
the mostly used form to interact with their clients and that in the contexts
in which the two models were used, this was also the case. Recall that the
original versions of the models were divided into subprocesses by their respec-
tive authors. These models could therefore be presented to the respondents as
a set of A4-sized papers, one for each subprocess. The alternative, flattened
versions for both models were presented on A3 paper format, which allowed
for reading the various labels with a normal effort.

Prior to the actual experimentation, all questions and correct answers were
discussed with and approved by the creators of the models. They validated
that the question sets could be used as a proper and representative way to test
someone’s understanding of the models. As a next step, five graduate students
from Eindhoven University of Technology were involved in a pre-test. This led
to the reformulation of 10 questions to remove ambiguities and the removal of
3 questions. The latter was explicitly required to ensure that the experiment
could be carried out within a reasonable time frame. For both models, 12
questions were included in the final version of the experiment.

Data collection procedure. During the experiment, the subjects were asked
to spend at most 25 minutes per model for answering its related questions.
This limit was imposed to keep the time spent on the entire questionnaire
under one hour and to prevent an imbalance in time spent on the two different
models. Both at the start and at the end of answering a set of questions for
each model, subjects were asked to write down the time to allow for exact
comparisons.

From the description of all the above elements it can be inferred that the
experiment is balanced, which means that all factor levels are used by all
participants of the experiment. In general, such an approach enables repeated
measurements and the collection of more precise data: Every subject generates
data for every treated factor level. As can be seen in Figure 2, we went through
two runs, so this experiment displays a repeated measurement. However, in
contrast to the approach in [46], two objects instead of one were used (process
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Table 1
Average percentages of correct answers for the model variants.

Flattened Modular

Model A 38.54% 42.36%

Model B 37.50% 58.33%

models A and B) to repeat the experiment in a second run. This setup enabled
us to avoid the presentation of the same model content to the same group of
subjects more than once, which limited learning effects.

In the next section, the results are presented of testing our hypothesis.

3.2 Results

For our data analysis, well-established statistical methods and standard met-
rics were applied, as provided by statistical software packages STATGRAPHICS

XV.II and SPSS 15.0. In this section, we will first present our main analysis
results, after which we will explore various alternative explanations for these
to decide on our hypothesis.

Our main analysis focuses on the comparison between the group performance
in terms of correctly answered questions for the modularized version and the
flattened version of each of the models. In other words, does it matter whether
someone sees a modularized or a flattened version of a process model? To de-
termine the answer to this question, we calculated for each of the subjects the
percentage of correct answers given for each model. Recall that each subject
saw a modular model for one process and a flattened version of a model for
the other process. The averages values are shown in Table 1.

As can be seen from this table, the modular version generates a higher average
percentage of correct answers for both models, which suggests a better under-
standability. To determine whether the differences are statistically significant,
it is important to select and apply the proper statistical test. Therefore, we
first explored for each of the models the distribution of correct answers for
each of its variants, i.e. the modular and flattened version. Because the stan-
dardized skewness and standardized kurtosis are within the range of -2 to +2,
for each model the correctly answered questions can be assumed to be nor-
mally distributed. Additionally, F-tests indicated that with a 95% confidence
the standard deviations of the samples for each of the models are also the
same. These two conditions justify the application of Student’s t-test [49].

Application of the t-test assuming a 95% confidence level results in the fol-
lowing results:
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• For model A, there is no significant difference between the modular and the
flattened version in terms of the average percentage of correctly answered
questions (P=0.562).
• For model B, there is a significant difference between the modular and the

flattened version in terms of the average percentage of correctly answered
questions (P=0.001).

Even though these results – in particular the difference for model B – seem
to favor the rejection of our null hypothesis we must explore some alterna-
tive explanations to properly decide on the acceptance or rejection of this
hypothesis.

The most important alternative explanation for the differences between the
results for model B is that – rather than whether the model is modular or
not – differences between the experimental groups are the deeper cause. We
analyze this argument in detail. Recall from Section 3 that our experiment
is characterized by a block design, i.e. subjects are randomly assigned to the
two experimental groups. If the subjects from the two groups were to differ
in a characteristic feature that influences one’s ability to understand process
models, then this would not allow us to reject the null hypothesis, despite the
noted differences. A second, alternative explanation would be that the group
of respondents that produced a higher average of correct answers for model B
simply spent more time on answering the questions. After all, it is reasonable
to expect that more answering time fosters a higher response quality.

To determine these alternative explanations, we analyzed the characteristics
as shown in Table 2. Each entry in the table lists an investigated factor,
the considered factor levels, and the P-value resulting from a statistical test.
Note that we applied a standard t-test to determine a statistical difference
between the groups with respect to each factor, unless its basic requirements
were not met with respect to the underlying normal distribution and variance
equality. In the latter case, we used the non-parametric Mann-Whitney W test
to compare the medians across both groups [49].

As can be seen from the P-values in this table (all greater than 0.05), none
of the investigated factors signals a statistical difference between the groups
at a 95% confidence level. Therefore, in lack of knowledge on other plausible
influences, we must reject the null hypothesis. In other words, we conclude that
modularity appears to have a positive connection with process understanding.

3.3 Discussion

For our discussion of the results presented in the previous section, we single
out two questions:
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Table 2
Group comparison.

Factor Factor levels P-value

Domain knowledge Knowledgeable with the process context
or not

0.386

Company experience Actual number of years within company 0.411

Field experience Actual number of years working as process
consultant

0.726

Education University degree or not 0.453

Job type Business consultant or technical consul-
tant

1.000

Modeling amount Estimated number of process models cre-
ated

0.504

Modeling size Estimated average size of process models
created (nodes)

0.764

Time experiment Actual time spent on entire experiment 0.948

Time B Actual time spent on model B in the ex-
periment

0.417

• Why does modularity matter for understanding model B, but not for A?
• How exactly does modularity influence the understanding of model B?

We will address these one at a time, after which we will discuss the limitations
of our experiment.

Model differences At this stage, we recall that we selected models A and
B from a wide range of models by using a set of criteria (see Section 3.2).
From the four models that met these, models A and B were most similar,
notably with respect to the number of tasks they contain and their depth. To
determine why modularity plays a bigger role in understanding model B, we
carried out a further analysis of both models by using the metrics shown in
Table 3. At the top of the table, some basic metrics are given, followed by
metrics that have been proposed as indicators for process model complexity
in general, and at the bottom some metrics that are explicitly proposed for
assessing modular process models.

Two metrics display values that differ more than a factor 2 for the models un-
der consideration, i.e. Subprocesses and FanIn-Out. According to [52], the
relatively high value of the latter metric for model B (33.42) would suggest a
poorer structuring of model B compared to model A. However, an additional
test to determine whether a difference exists in model understandability be-
tween the modular version of model A and the modular version of model B
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Table 3
Complexity metrics.

Metric Description Source Model A Model B

Tasks Total number of tasks – 105 120

Nodes Total number of nodes – 130 175

Arcs Total number of arcs – 171 248

Subprocesses Total number of subprocess in
original model

– 9 20

To Average number of outgoing
arcs from transitions (tasks)

[50] 0.81 1.03

Po Average number of outgoing
arcs from places (milestones)

[50] 3.42 2.24

Cycn McCabe’s cyclomatic number
(adjusted for Petri nets)

[50] 43 75

Connectivity Number of arcs divided by the
number of nodes

[51] 1.32 1.42

Density Number of arcs divided by the
maximal number of arcs

[51] 0.020 0.016

AvgConDeg Average number of input and
output arcs per routing ele-
ment

[51] 1.10 1.21

Fan-In Average number of modules
calling a module

[52] 1.25 2.26

Fan-Out Average number of modules
called by a module

[52] 1.5 2.26

Fanin-Out ((Fan-In) ∗ (Fan-Out))2 [52] 3.63 33.42

Depth Degree of nesting within the
process model

[51] 3 3

does not show a higher average percentage of correct answers for the former.
In lack of other empirical support for the use of this metric, the relatively high
number of subprocesses (20) in model B seems more relevant: It suggests that
the difference between the modular and flattened version of this model is more
distinct than for model A.

For the remaining factors, models A and B display quite similar characteristics,
even though model B is the slightly larger one. There is no general trend
that suggests that one model is considerably more complex than the other
and none of the metrics display large differences – other than the number of
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subprocesses. So, the most reasonable answer to the question why modularity
has an impact on one model but not on another is that B’s original version
displayed a much higher degree of modularization than model A. This may
have helped subjects in understanding the model better. This would suggest
that from a cognitive perspective, that model would show a better abstraction
gradient and better information hiding.

The influence of modularity In search for an explanation of how modu-
larity increases model understanding, we re-examined the questions we used
in our experiment. Recall that these questions were validated by the original
creators of the model (see Section 3): The questions were considered to be to
the point and representative to test someone’s understanding of the model.

In the post-analysis of our results, we investigated the conjunction that by
using a modular model certain types of question would be answered better
than other ones. In particular, we categorized our questions as being of a local
or global type. We characterized the difference such that an answer for a local
question can be found within the confinements of a single subprocess in the
modular version, where the examination of more subprocesses is required to
answer a global question. As it turned out, model B contained 2 global ques-
tions and 10 local questions. In a comparison between the group that used the
modular model and the group that used the flattened model, we found that for
local questions, a significant difference exists in terms of the average percent-
age of correctly answered questions between the modular and the flattened
version of model B (P=0.002). However, too few global questions were used
to determine whether there is a difference in terms of the average percentage
of correctly answered questions between using the modular or the flattened
version of model B. Therefore, the cognitive effect of hidden dependencies do
not show up too much.

From this analysis, we cautiously infer that modularity may be helpful for
understanding a process model because it shields the reader from unnecessary
information. Where the reader of a flattened model always sees the entire
context, the reader of the modular version is confronted with a limited set of
information when the proper subprocess is selected. This is especially helpful
when such a reader is looking for local information. In this sense, the use of
subpropcess in process models may generate an effect that is also achieved by
Parnas’ “information hiding” concept in software development[17]: Program-
mers are most effective if shielded from, rather than exposed to the details of
construction of system parts other than their own.

Whether there is also an opposite effect, i.e. that the correct answer for a global
question can be easier found with a flattened model, could not be established
for model B. Our suspicion is that this not all too likely; an analysis of the
results for model A did not show such an effect.
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Limitations Only 28 subjects were involved in this experiment and only 2
process models were considered. Both aspects are threats to the internal va-
lidity of this experiment, i.e. whether our claims about the measurements are
correct. At the same time, these small numbers result from our choices to (1)
involve real process modelers as well as (2) process models from industrial
practice. From all the modelers working in our partner company, more than
half of them participated in the experiment and it was not feasible to involve
them in a larger experiment, e.g. to have them consider more models. The
choices for real modelers and models clearly positively affect the external va-
lidity of our study, i.e. the potential to generalize our findings. Therefore, our
experiment is another illustration of how “internal and external validity can
be negatively related” [53].

Another aspect worth mentioning is the choice of displaying the process models
on paper. It is by no means certain that findings that are similar to ours would
result from an experimental set-up where models are shown on a computer
display. Depending on the features of the modeling tool used, “information
hiding” could also be achieved in other ways than applying modularity. For
example, the Protos tool that was used to create the models also allows to
zoom in on part of the model.

A third point for consideration is that the involved models were very large.
It seems likely that the effects of the use of subprocesses in smaller process
models are absent or at least less prominent. This is an observation that is
probably comparable to the use of modularity in other technological domains.

Finally, the lay-out of a process model may affect the understandability of a
process model, as we hypothesized before [39]. As there is a limited under-
standing of such an effect for process models, we are restrained in properly
controlling this variable. Note that we used the same modeling elements, the
same top-down modeling direction, and a roughly similar breadth and width
for both models to limit this effect (compare Figures 3 and 4).

4 Criteria for Subprocess Discovery

The results of the experiments we presented point to the usefulness of modular-
ization to improve the understandability of a process model. An open question
at this point is how to select parts of the process model for modularization?
We referred to this issue in Section 2.2 as modularization selection and noted
that no dedicated approaches for this issue are available. Clearly, a process
analyst would benefit from a tool that assists in the discovery of subprocesses
(i.e.: collections of nodes that should be put together into a subprocess). As
an explorative study towards the development of such a tool, we investigate
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criteria that are suitable for deciding whether nodes should be put together
into a subprocess. We investigate three types of criteria :

(1) the block-structuredness of the subprocess;
(2) the connectedness of nodes in the subprocess; and
(3) the similarity of the labels of the nodes in the subprocess.

We explore the applicability of these criteria in a case study, in which we
automatically divide model B from Figure 4 into subprocesses. The motivation
to select this model is that it was developed by experienced process modelers
and that their modularization showed tangible benefits for understanding it
(see Section 3.2). We investigate both quantitatively and qualitatively how
well the result from the automatic modularization approaches the subprocess
division made by the human modelers in question. We first explain the three
criteria in detail, next we explain the setup of an empirical evaluation of their
appropriateness and finally, we discuss the results of the evaluation.

4.1 Block-Structuredness

A (sub-)process is called block-structured if it has a single entry and a single
exit. For that reason, these blocks are often referred to as Single Entry Single
Exit (SESE) components. The entry is the node through which the flow of con-
trol enters the block and an exit is the node through which the flow of control
leaves the block. The requirement that a business process has a single entry
and a single exit is quite common. For example, so-called block structured
languages, such as BPEL [54], enforce this requirement by construction. It is
also used as an additional requirement for other languages [55,56]. Therefore,
we consider this requirement a good basis for detecting subprocesses.

More precisely, let G be a directed graph with a single source and a single
sink. A source is a node with outgoing arcs only and a sink is a node with
incoming arcs only. Let F be a connected subgraph of G. A node is a boundary
node of F if and only if it is either both connected to nodes in F and to nodes
outside of F , or it if it is the source or the sink of the process. A boundary
node is an entry if and only if all its incoming arcs are outside of F or all its
outgoing arcs are inside of F . A boundary node is an exit if and only if all its
incoming arcs are inside of F or all its outgoing arcs are outside of F . F is a
SESE component if and only if it has a single entry and a single exit.

A SESE component is canonical if and only if its set of edges does not over-
lap with the set of edges of another SESE component. Since canonical SESE
components do not overlap, they are either nested or disjoint. Therefore, we
can form a tree structure of canonical components. The root of the tree is the
entire process, the branches of a component in the tree are the components
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that are nested in that component. The resulting tree is called the Refined
Process Structure Tree (RPST) [57,58]. For this first approach of automatic
modularization, we consider the RPST to form the subdivision of a process
into subprocesses.

For example, in figure 5 the process as a whole is a SESE component. Within
the process, two SESE components can be recognized, one consisting of the
vertices 3, 4, 5, 6 and 7 and one consisting of the vertices 9, 10, 11 and 12. Both
of these components again consist of two components; the first one consists
of the components 3, 4, 7 and 3, 5, 6, 7; and the second one consists of the
components 9, 10, 12 and 9, 11, 12. Hence a tree structure is formed with the
complete process as root, the components 3, 4, 5, 6, 7 and 9, 10, 11, 12 as
branches and the sub-components of those components as further branches.
Each of the SESE components can be marked as a potential sub-process.

 /Hoofdproces

Send Approval
Decision

Check Data 
with Mandate

Make Decision

Collect Data

Send Rejection

Complete
Data

Check
Correctness

Receive
Request
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10 11

12

Decision

Figure 5. Example Process Model for Automatic Decomposition
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4.2 Connectedness

A collection of nodes is connected if the nodes in the collection are more
strongly connected by arcs to each other than to nodes outside this collection.
Note that this definition implies that for an automatic discovery of subpro-
cesses a parameter is involved that should express how strong the connection
between nodes in a collection must be.

We use graph cluster analysis [59] to establish collections of nodes in a busi-
ness process that are strongly connected to each other; in cluster analysis
these collections are called clusters and they will be used as subprocesses.
More precisely, we use (an adaptation of) a clustering technique called spec-
tral clustering [60], which is parameterized with the number of clusters n > 1
that we aim to discover. Given a graph G = (V, E) with vertices V and edges
E, our clustering technique partitions the set of vertices V into n clusters
C1, C2, . . . , Cn, such that the number of edges that cross clusters, defined as
|{(n, m)|(n, m) ∈ E, n ∈ Ci, m ∈ Cj, i 6= j}|, is minimal.

For example, if we decide to identify 2 subprocess in figure 5, vertices 3, 4, 5,
6, 7 would never be put into separate clusters, because that would cause a cut
of at least 2 edges (while the minimum-cut consists of only 1 edge). Similarly,
9, 10, 11, 12 would never be put into separate clusters. However, which two
clusters are identified in the end is not deterministic, because as long as the
nodes mentioned before are not put into separate clusters all other separations
lead to a cut of 1 edge. For example, one possible separation distinguishes
clusters 1, 2, 3, 4, 5, 6, 7 and 8, 9, 10, 11, 12. Another possible separation
distinguishes clusters 1 and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. These clusters can
be marked as potential sub-processes.

4.3 Label Similarity

The third criterion we will use for the automatic modularization builds on
the idea that nodes that have more similar labels can be considered to have a
higher probability of belonging to the same subprocess than nodes that have
very different labels. It is more likely that the nodes labeled ‘receive request’
and ‘judge request’ belong to the same subprocess than the nodes ‘receive
request’ and ‘bill client’. In previous work [61], we investigated several metrics
to measure the similarity of two labels. In this paper we use the notion syntac-
tical similarity, which is based on string-edit distance. This is a rough metric
that does not take complex relations between words, such as synonymy, into
account. Its usage in this context can be defended because people who work
on the same business process model can be expected to align their terminology
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and not use synonyms or homonyms. Furthermore, subprocesses are likely to
work on the same business object, which should be included in the activities
labels.

For clustering based on label similarity, control nodes are ignored, because
their labels often do not provide information that can be used for clustering.
For example, they can be labeled ‘AND’, ‘OR’ or ‘XOR’ to indicate their type.
This does not provide us with information to relate them to other nodes in
the process model.

The string edit distance is defined as follows. Let s and t be two strings.
The string edit distance of s and t, denoted ed(s, t), is the minimal number of
atomic string operations needed to transform s into t or vice versa. The atomic
string operations are: inserting a character, deleting a character or substituting
a character for another. For example, the string edit distance between ‘Verify
invoice’ and ‘Verification invoice’ is 7; substitute ‘y’ for ‘i’ and insert ‘cation’.

Spectral clustering can be used to determine clusters that are similar with
respect to their labels in much the same way as it can be used to determine
clusters that are well connected. This is done by minimizing the total similarity
of labels between the clusters instead of the total number of edges between
the clusters. More precisely, given a set of strings S, a preferred number of
clusters n and a graph G = (V, E, l) with vertices V , edges E and a function
l : V → S that labels vertices, our label clustering technique partitions the set
of vertices V into n clusters C1, C2, . . . , Cn, such that the total similarity of
vertices from different clusters, defined as Σn∈Ci,m∈Cj ,i 6=j

1
ed(l(n),l(m))

, is minimal.

For example, using spectral clustering to identify 2 clusters in figure 5, forms
the cluster 2, 4, 5, 6 (in which all nodes have ‘data’ and/or ‘check’ in their
label) and the cluster 1, 8, 10, 11 (because 8, 10 and 11 all have ‘send’ and/or
‘decision’ in their label and ‘receive request’ is just most similar to ‘send
rejection decision’). These clusters can be marked as potential sub-processes.

Note that label similarity and connectedness can also be combined easily by
only considering the similarity of labels in case the corresponding vertices
are connected, i.e. we minimize: Σ(n,m)∈E,n∈Ci,m∈Cj ,i 6=j

1
ed(l(n),l(m))

. As will be
discussed, we will also include this hybrid form of clustering in our evaluation.

For example, using a combination of label similarity and connectedness to
identify 2 clusters in this case would consider the disconnectedness of nodes
1 and 11 and would produce the clusters 1, 2, 4, 5, 6 and 8, 10, 11. These
clusters can be marked as potential sub-processes.
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4.4 Evaluation Setup

We evaluated the applicability of the criteria by applying the criteria to au-
tomatically obtain a subprocess decomposition of the flattened process model
B from Figure 4. We evaluated the decomposition both quantitatively and
qualitatively.

For the quantitative analysis, we compared the following characteristics for
the decomposition done by humans and the decomposition that was done
automatically using the metrics: subprocesses, fan-in, fan-out, fanin-out and
depth, as they are defined in table 3. The values for the other metrics do not
differ for different decompositions. Therefore, we do not have to include them
again. In addition to that, we compared the number of nodes per subprocess
and the precision, recall, overshoot and undershoot, which we will explain in
more detail.

Precision and recall are common measures in information retrieval, used to
compare the performance of automated information retrieval to human infor-
mation retrieval. In our case that is retrieval of subprocesses. In this context
precision and recall compare the subprocesses that are found automatically to
the processes that have been identified by humans, where we define a subpro-
cess as a collection of nodes. Precision is commonly defined as the fraction of
‘true positives’ (i.e. the number of subprocess that is both found and existing
according to humans, divided by the number of subprocesses that is found)
and recall is defined as the fraction that represents the ‘completeness’ (i.e.
the number of found existing subprocesses divided by the number of existing
subprocesses).

For this context, we consider the way that precision and recall are determined
on the basis of exact matches as too strict. Recall that subprocesses are defined
by the set of nodes of which they consist. We argue that a subprocess that
is automatically retrieved, but from which some relevant nodes are missing
as compared to the subprocess determined by human modelers, is not a com-
pletely missed match. For example, suppose that we consider that the set of
nodes {‘receive request’, ‘fill out request’, ‘complete request’, ‘accept request’,
‘file request’} constitutes a subprocess. If the set of nodes {‘receive request’,
‘fill out request’, ‘complete request’, ‘accept request’} is returned automati-
cally, then this is not an exact match, but it does provide useful information
to the process analyst that is determining the subprocesses. The process ana-
lyst can easily investigate the subprocess and manually complete it; he or she
is much better off than when no information was returned at all. Therefore,
we define precision and recall in terms of the number of matched nodes that
constitute the subprocesses, rather than in terms of the number of (exactly)
matched subprocesses.
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In addition to the notions of procesion and recall, we also introduce overshoot
and undershoot to give a measure of how (im)perfect a subprocess match is.
Overshoot is the fraction of found nodes that does no belong in a subprocess;
conversely, undershoot is the fraction of nodes that do belong but that were
not found. For example, in the example used above the overshoot is 0% (no
nodes were found that did not belong) and the undershoot is 20% (the element
‘file request’ was not found but did belong in the subprocess).

More precisely, we measure precision, recall, overshoot and undershoot as fol-
lows. Let N be the set of all nodes in a process (including its subprocesses).
Let PM ⊆ PN be the set of all subprocesses that were determined manually
by humans and let PA ⊆ PN be the set of all subprocesses that were deter-
mined automatically. Furthermore, let PM ∈ PM be a subprocess that was
determined manually by humans and let PA ∈ PA be a subprocess that was
determined automatically. The overlap between PA and PM is:

Overlap =
|PA ∩ PM |

max(|PA|, |PM |)

We say that PA is the most relevant match for PM if its overlap with PM

is greater than 0 and there is no other automatically determined subprocess
P ′

A ∈ PA with a higher overlap than PA. Let the function match : PM → PN
return the most relevant match for each manually determined subprocess, or
the empty set if no such match exist.

Precision and recall can then be defined as follows.

Precision =
ΣPM∈PM |PM ∩match(PM)|

ΣPA∈PA|PA|

Recall =
ΣPM∈PM |PM ∩match(PM)|

ΣPM∈PM |PM |

The F Score is the harmonic mean of the precision and the recall

2 · precision · recall

precision + recall

Overshoot and undershoot are defined as follows.

Overshoot =
ΣPM∈PM |match(PM)− PM |

ΣPA∈PA|PA|

Undershoot =
ΣPM∈PM |PM −match(PM)|

ΣPM∈PM|PM |
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Table 4
Results of Empirical Evaluation of Subprocess Criteria.
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Subprocesses 68 49 39 47 20

Nodes per Subprocess (avg) 5.12 4.73 5.95 4.94 8.75

Nodes per Subprocess (min) 1 1 2 1 2

Nodes per Subprocess (max) 103 54 80 57 27

Fan-In 2.95 3.33 6.21 3.83 2.26

Fan-Out 3.32 3.33 6.21 3.83 2.26

Fanin-Out 96.11 122.45 1482.53 215.13 33.42

Depth 5 2 2 2 3

Precision 0.13 0.34 0.22 0.32 –

Recall 0.5 0.37 0.25 0.36 –

F-Score 0.21 0.35 0.24 0.34 –

Overshoot 0.19 0.25 0.68 0.21 –

Undershoot 0.4 0.57 0.72 0.59 –
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4.5 Evaluation Results

Table 4 shows the results of the evaluation. The figure shows how the subpro-
cess division, using a certain criterion, scores in terms of each of the metrics.
The ‘combined’ criterion is the combination of the ‘connectedness’ and ‘label
similarity’ criteria as explained in subsection 4.3. In the ‘original’ column, the
scores of the original model are repeated to simplify the comparison. If a cri-
terion is parameterized (this holds for the connectedness, label similarity and
combined criteria), the results are shown for the parameter-value that leads
to the highest F-Score.

The F-Score is the most important metric, because it provides an indication of
how well a subprocess division approximates the original manual subprocess
division. This metric shows that the connectedness criteria can be used best
to approximate manual division into subprocesses. Interestingly, combining
information about connectedness with information about label similarity leads
to slightly inferior results.

All of the metrics have high overshoot and undershoot, meaning that for each
automatically determined subprocess a large number of nodes is superfluous
or missing. For the connectedness criteria, on average 25% of the nodes in an
automatically determined subprocess are superfluous and 57% of the nodes
are missing. The block structuredness criterion relatively leads to the lowest
overshoot and undershoot.

The most striking differences between the automatically and manually derived
subprocesses are the number of subprocesses that are created and the sizes of
those subprocesses in terms of the number of nodes. The number of automat-
ically determined subprocesses is for all used criteria at least twice that of the
number that is created manually. Figure 6 shows the difference between the
subprocess sizes in more detail. For each of the criteria it shows the distribu-
tion of the subprocess sizes, using classes of subprocesses containing between
1 and 5 nodes, 6 and 10 nodes, 11 and 15 nodes, 16 and 20 nodes, and more
than 20 nodes. From the table and the figure, we can conclude that under
each of the criteria one (very) large subprocess is created and many (very)
small subprocesses, while in the manual subdivision mainly mid-sized (6 to 10
nodes) subprocesses exist.

From these results we can point towards (combinations of) criteria that seem
attractive to be investigated further for the automated support of dividing
a process into subprocesses. Connectedness is the most promising criterion,
although it suffers from a high undershoot, which is caused by the fact that
it produces a large number of very small subprocesses. Consequently, the re-
sults that are produced by this criterion can be improved by merging small
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subprocesses (i.e.: subprocesses containing in the 1 to 5 nodes). Interestingly,
label similarity does not present a good criterion for subprocess division; ap-
parently labels from nodes in the same subprocess are not more similar than
labels from nodes in different subprocesses.

These results suggest that there is potential for supporting designers in mod-
ularizing their process models. In order to achieve nicely understandable sub-
processes the effects of information hiding and additional information costs
have to be balanced. Automatic techniques are suitable for proposing candi-
dates of subprocesses for a given model. Yet, the expertise of the designer is
required in the end to assess the suitability of a specific modularization.

5 Conclusion

We set out with this paper to address two research problems. The first problem
related to the lack of evidence for the usefulness of modularization through the
use of subprocesses in business process models. The results from the controlled
experiment that we described in this paper point at the presence of positive
effects of subprocesses on the understandability of the model in which they
are used. However, the effect may only manifest itself in situations where
subprocesses are used on an extensive scale. The most likely explanation that
we can present for the additional question why modularization works is that
the comprehension of local parts of a process models seems to be improved;
subprocesses hide information that is not relevant.

The second problem we addressed related to the lack of theoretically grounded
guidelines or dedicated approaches for modularizing a given process model
into subprocesses. We compared in an explorative fashion the automated use
of three distinctively different types of criteria and one hybrid form for this
purpose. A criterion that minimizes the number of edges between subprocesses
emerged as the most promising candidate to investigate further.

The results we presented should be considered within the limitations of the
experimental and explorative nature of our research approach. Nonetheless,
we find it reassuring that positive effects of subprocess usage have been estab-
lished in an experiment that involved experienced process modelers. In various
research, modeler expertise has been established as a critical issue for process
modeling projects [62]. Petre observed in her research that expert modelers
focus on relevant graphical elements, recognize patterns and disregard irrel-
evant information [63]. In contrast, novices tend to lack reading and search
strategies which result from modeling experience and extensive learning. In
that sense, the value of subprocesses is arguably of even greater value in set-
tings where people with low modeling expertise aim to make sense of process
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models. We aim to follow up on this conjecture in our future research.

Another line of future research relates to the further development of pro-
cess modularization approaches. At this point, we identified several attractive
ingredients for such an approach, in particular with respect to the use of struc-
tural characteristics of a process model. Yet, in consideration of the difficulty
of finding good modular designs in other domains, it does not seem plausible
that a satisfactory, fully automated approach is feasible. Therefore, it seems
sensible to get a process modeler “in the loop” in further evaluations of au-
tomated approaches, in this way moving the focus from automated modeling
towards modeling guidance. This direction would also fit the wider stream
of research in the process modeling domain that aims at advanced tools to
support process modelers beyond the features that ordinary modeling tools
provide, e.g. [64,65].
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