Merging Business Process Models
(Extended Version)

Marcello La Rosal, Marlon Dumas?, Reina Kiirik?, and Remco Dijkman?®

! Queensland University of Technology, Australia
m.larosa@qut.edu.au
2 University of Tartu, Estonia
{marlon.dumas,reinak }@Qut.ee
3 Eindhoven University of Technology, The Netherlands
r.m.dijkman@tue.nl

Abstract. This paper addresses the following problem: given two or
more business process models, create a process model that is the union
of the process models given as input. In other words, the behavior of
the produced process model should encompass that of the input models.
The paper describes an algorithm that produces a single configurable
process model from an arbitrary collection of process models. The algo-
rithm works by extracting the common parts of the input process models,
creating a single copy of them, and appending the differences as branches
of configurable connectors. This way, the merged process model is kept
as small as possible, while still capturing all the behavior of the input
models. Moreover, analysts are able to trace back from which original
model(s) does a given element in the merged model come from. The al-
gorithm has been prototyped and tested against process models taken
from several application domains.

1 Introduction

In the context of company mergers and restructurings, it often occurs that mul-
tiple alternative processes, previously belonging to different companies or units,
need to be consolidated into a single one in order to eliminate redundancies and
to create synergies. To this end, teams of business analysts need to manually
compare similar process models so as to identify commonalities and differences,
and to create integrated process models that can be used to drive the process con-
solidation effort. This process model merging effort is tedious, time-consuming
and error-prone. In one instance reported in this paper, it took a team of five
analysts and 600 man-hours to merge 25% of an end-to-end process model.

In this paper, we consider the problem of automatically merging process
models under the following requirements:

1. The behavior of the merged model should subsume that of the input models.
2. Given an element in the merged process model, analysts should be able to
trace back from which process model(s) the element in question originates.



2 M. La Rosa et al.

3. One should be able to derive the input process models from the merged one.

The main contribution of the paper is an algorithm that takes as input a
collection of process models and generates a configurable process model [10].
A configurable process model is a modeling artifact that captures a family of
process models in an integrated manner and that allows analysts to understand
what these process models share, what are their differences, and why and how
these differences occur. Given a configurable process model, analysts can derive
individual members of the underlying family of processes by means of a procedure
known as individualization. We contend that configurable process models are a
suitable output for a process merge algorithm, because they provide a mechanism
to fulfill the second and third requirements outlined above.

The proposed algorithm has been implemented and tested on several collec-
tions of process models taken from different domains. In addition to providing
evidence on the correctness of the algorithm and its implementation, these tests
show that the process merge algorithm produces compact models and that it
scales up to process models containing hundreds of nodes.

The paper is structured as follows. Section 2 introduces the notion of config-
urable process model as well as a notion of similarity of process models, which
is used as a basis for the merge algorithm. Section 3 presents the process merge
algorithm. Section 4 reports on the implementation and evaluation of the algo-
rithm. Finally, Section 5 discusses related work and Section 6 draws conclusions.

2 Preliminaries

This section introduces two basic ingredients of the proposed process merging
technique: a notation for configurable process models and a technique to match
the elements of a given pair of process models, so that we know which pairs of
process model elements should be considered as equivalent when merging.

2.1 Configurable Business Process

There exist many notations to represent business processes, such as Event-driven
Process Chains (EPC), UML Activity Diagrams (UML ADs) and the Business
Process Modeling Notation (BPMN). In this paper we abstract from any specific
notation and represent a business process model as a directed graph with labeled
nodes. Specifically, we define a business process graph G as a set of pairs of
process model nodes—each pair denoting a directed edge. A node n of G is
a tuple (idg(n),A\g(n),7¢(n),nc(n)) consisting of a unique identifier idg(n)
(of type string), a label Ag(n) (of type string), a type 7¢(n) indicating the
type of node, and a boolean ng(n) indicating whether the node is configurable
or not. If there is no confusion, we will drop the subscript G from idg, Ag,
T and ng. For a business process graph G, its set of nodes, denoted Ng, is
U{{n1, n2}(n1, n2) € G}.

The available types of nodes depend on the language that is used. For ex-
ample, the BPMN notation has nodes of type ‘activity’, ‘event’ and ‘gateway’.



Merging Business Process Models (Extended Version) 3

In the rest of this paper we will show examples using the EPC notation, which
has three types of nodes: i) ‘function’ nodes, representing tasks that can be
performed in an organization; ii) ‘event’ nodes, representing pre-conditions that
must be satisfied before a function can be performed, or post-conditions that
are satisfied after a function has been performed; and iii) ‘connector’ nodes,
which determine the flow of execution of the process. Thus, for a given node n,
Tq € {“f”, “€”, “¢’} where “f” stands for function, “e” stands for event and
“c” stands for connector. The label of a node of type “c” indicates the kind
of connector. EPCs have three kinds of connectors: AND, XOR and OR. AND
connectors either represent that after the connector, the process can continue
along multiple parallel paths (AND-split), or that it has to wait for multiple par-
allel paths in order to be able to continue (AND-join). XOR, connectors either
represent that after the connector, a choice has to be made about which path to
continue on (XOR-split), or that the process has to wait for a single path to be
completed in order to be allowed to continue (XOR-join). OR connectors start
or wait for multiple paths. Models G; and G5 in Fig. 1 are two example EPCs.

A Configurable EPC (C-EPC) [10] is an EPC where some connectors are
marked as configurable. A configurable connector can be configured by reducing
its incoming branches (in the case of a join) or its outgoing branches (in the
case of a split). The result will be a regular connector with a reduced number of
incoming or outgoing branches. In addition, the type of a configurable OR can be
restricted to a regular XOR or AND. After being configured, a C-EPC needs to
be individualized by removing those branches that have been excluded for each
configurable connector. Model C'G in Fig. 1 is an example of C-EPC featuring
a configurable XOR-split, a configurable XOR-join and a configurable OR~join,
while the two models G; and G2 are two possible individualizations of CG. G
can be obtained by configuring the three configurable connectors in order to keep
all branches labeled “17, and restricting the OR-join to an AND-join; G5 can
be obtained by configuring the three configurable connectors in order to keep all
branches labeled “2” and restricting the OR-join to an XOR-join. Since in both
cases only one branch is kept for the two configurable XOR connectors (either
the one labeled “1”7 or the one labeled “2”), these two connectors are removed
altogether during individualization. This is why they are not present in G; and
Go. For more details on the individualization algorithm, we refer to [10].

According to requirement (2) in Section 1, we need a mechanism to trace back
from which variant a given element in the merged model originates. Coming back
to the example in Fig. 1, the C-EPC model (CG) can also be seen as the result
of merging the two EPCs (G and G3). The configurable XOR-split immediately
below function “Shipment Processing” in C'G, has two outgoing edges. One of
them originates from G; (and we thus label it with identifier “1”) while the
second originates from G (identifier “2”). In some cases, an edge in the merged
model originates from multiple variants. For example, the edge that emanates
from event “Delivery is relevant for shipment” is labeled with both variants (“1”
and “2”) since this edge can be found in both original models.



4 M. La Rosa et al.

event G G, — cG
Shipment is td
be processed
funcion ( "
be proces

12

Shipment
processing

12

arc

AND connector

Shipment

XOR connector processing

N
®
®
@  OoR comnector

configurable
connector

mapping
max.

Delivery is to
genemhd and
@ delivery opene
common

J
reden
) g
ies’ Deliveries
need to be need to be ,.v,, s
lanned planned ,.esd to be
~ 4 Ianned

WeryTs DelveryTs ; elvery /s eTveries -
{ relevant for relevant for iy Dp:';‘{(‘;;y relevant for needtobe ) (oo
shipment shipment shlpmem planned

)
N

[

Tansportation
planning and
processing

Tansportation
planning and | [T Transporation
processing / . | planning and

processing”
2: “Transporting”

Shipment is
com

plete ‘Shipment is
L ) complete.

Fig. 1. Two business process models with a mapping, and their merged model.

Also, since nodes in the merged model are obtained by combining nodes from
different variants, we need to capture the label of the node in each of its vari-
ants. For example, function “Transportation planning and processing” in CG
stems from the merger of the function with the same name in G, and function
“Transporting” in G3. Accordingly, this function in C'G will have an annotation
(as shown in the figure), stating that its label in variant 1 is “Transportation
planning and processing”, while its label in variant 2 is “Transporting”. Simi-
larly, the configurable OR connector just above “Transportation planning and
processing” in CG stems from two connectors: an AND connector in variant 1,
and an XOR connector in variant 2. Thus an annotation will be attached to this
node (as shown in the figure) which will record the fact that the label of this
connector is “and” in variant 1, and “xor” in variant 2. In addition to providing
traceability, these annotations enable us to derive the original process models by
configuring the merged one, as per requirement (3) in Section 1. Thus, we define
a concept of Annotated Process Graph, which attaches additional metadata to
edges and nodes in a process graph. Also, we define some auxiliary notations
which we will use when comparing two process graphs.

Definition 1 (Annotated Business Process Graph). Let Z be a set of iden-
tifiers to refer to business process models and L the set of labels that process model
nodes can take. An annotated business process graph is a tuple (G, ag,va) where
G is a business process graph, ag : G — ©(Z) is a function that maps each edge
in G to a set of process graph identifiers, and vg : Ng — (Z x L) is a function



Merging Business Process Models (Extended Version) 5

that maps each node in G to a set of pairs where each pair indicates a process
graph identifier and the label of the node for that process graph.

Definition 2 (Preset, Postset, Transitive Preset, Transitive Postset).
Let G be a business process graph. For a node n € Ng we define the preset as
on = {m|(m,n) € G} and the postset as ne = {m|(n,m) € G}. We call an
element of the preset predecessor and an element of the postset successor. There
is a path between two nodes n € Ng and m € Ng, denoted n — m, if and

only if (iff) there exists a sequence of nodes ny,...,ni € Ng with n = ny and
m = ny such that for alli € 1,...,k—1 holds: (n;,n;y1) € G. If n # m and
forallie€2,....k—1 holds T(n;) =“”, the path n < m is called a connector

chain. The set of nodes from which a node n € N¢g is reachable via a connector
chain is defined as e n = {m € Ng|m <> n} and is called the transitive preset
of n via connector chains. The set of nodes that can be reached via a connector
chain from n is n e= {m € Ng|n <> m} and is called the transitive postset of
n via connector chains.

2.2 Matching Business Processes

The aim of matching two process models is to establish the best possible mapping
between their nodes. What is considered to be the best mapping depends on a
scoring function, called the matching score. The matching score we employ is
related to the notion of graph edit distance [1]. We use this matching score
because it performed well in several empirical studies [12,2, 3].

Given two graphs and a mapping between their nodes, we compute the match-
ing score in three steps. First, we compute the matching score of each mapping
between two nodes as follows. Nodes of different types must not be mapped,
splits must be matched with splits and joins must be matched with joins. Thus,
a mapping between nodes of different types, or between a split and a join, has
a matching score of 0. The matching score of a mapping between two functions
or between two events can be measured by the similarity of their labels. To de-
termine the similarity of node labels, we use the standard notion of string edit
distance [8]. More advanced notions, e.g. [12,2, 3] can be used as required.

The string edit distance of s and ¢ is the minimal number of atomic string
operations needed to transform s into t or vice versa. The atomic string opera-
tions are: inserting a character, deleting a character or substituting a character
for another. The string edit similarity of s and ¢, denoted Sed(s,t) is one minus
the string-edit distance. For example, the string edit distance between ‘Trans-
portation planning and processing’ and ‘Transporting’ is 26: delete ‘ion planning
and process’. Consequently, the string edit similarity is 1.0 — % ~ 0.32.

We cannot use the string edit distance to compute the similarity of control
nodes, because the labels of control nodes should be interpreted atomically (i.e.:
the difference between ‘OR’ and ‘XOR’ is the same as the difference between
‘OR’” and ‘AND’ even if the number of string operations needed to get from
one to the other differs). Instead, we use context similarity to determine the
similarity of control nodes. Context similarity is computed as the fraction of



6 M. La Rosa et al.

nodes in the transitive presets and the transitive postsets that are mapped (i.e.:
the contexts of the nodes), provided at least one mapping of transitive preset
nodes and one mapping of transitive postset nodes exists.

Definition 3 (Context similarity). Let G1 and G5 be two process graphs. Let
M : Ng, » Ng, be a partial injective mapping that maps nodes in G1 to nodes
in Ga. The context similarity of two mapped nodes n € Ng, and m € Ng,,
denoted Ces(n,m) is defined as:

|M(en)Nem|+|M(mne)Nme|

Ces(n,m) = N o :
ma(| & nf,| e m|) + maz(|n e |, |m e |)

where M applied to a set yields the set in which M is applied to each element.

Ces(n,m) returns 0 if no mapping exists between nodes in the transitive presets
and in the transitive postsets of n and m. For example, the event ‘Delivery is
relevant for shipment’ preceding the AND-join (via a connector chain of size 0) in
model G; from Fig. 1 is mapped to the event ‘Delivery is relevant for shipment’
preceding the XOR-join in G5. Also, the one function succeeding the AND-join
(via a connector chain of size 0) in G is mapped to the one function succeeding
the XOR-join in G5. Therefore, the context similarity of the two connectors is:
141

377 = 0.5. We can now define the similarity of two nodes as follows.

Definition 4 (Node matching score). Let G; and G2 be two (configurable)
process graphs. The similarity of two mapped nodes n € Ng, and m € Ng,,
denoted Sim(n, m) is defined as:

Sed(n,m) if T(n) =7(m)=f orr(n) =7(m) =e
Sim(n,m) =< Ces(n,m) if T(n) =7(m) =c and en=em =1 or ne =me =
0 otherwise

Second, we count the number of Node substitutions (a node in one graph is
substituted for a node in the other graph iff they are matched); Node inser-
tions/deletions (a node is inserted into or deleted from one graph iff it is not
matched); Edge substitution (an edge from node a to node b in one graph is
substituted for an edge in the other graph iff node a is matched to node a’, node
b is matched to node b’ and there exists an edge from node @’ to node V'); and
Edge insertions/deletions (an edge is inserted into or deleted from one graph iff
it is not substituted).

Third, we return the weighted average of the fraction of inserted/deleted
nodes, the fraction of inserted/deleted edges and the average score for node
substitutions. More precisely, we define the matching score as follows.

Definition 5 (Matching score). Let G; and G2 be two process graphs and
let M be their mapping function, where dom(M) denotes the domain of M and
cod(M) denotes the codomain of M. Let also 0 < wsubn < 1, 0 < wskipn < 1
and 0 < wskipe < 1 be the weights that we assign to substituted nodes, inserted
or deleted nodes and inserted or deleted edges, respectively.



Merging Business Process Models (Extended Version) 7

The set of substituted nodes, denoted subn, inserted or deleted nodes, denoted
skipn, substituted edges, denoted sube, and inserted or deleted edges, denoted
skipe, are defined as follows:

subn = dom (M) U cod(M) skipn = (Ng, U Ng,) — subn
sube = {(a,b) € E1|(M(a), M (b)) € E2}U  skipe = (E; U Es) \ sube
{(a,¥') € Eof(M~(a'), M~H(V')) € Ev}

The fraction of inserted or deleted nodes, denoted fskipn, the fraction of inserted
or deleted edges, denoted fskipe and the average distance of substituted nodes,
denoted fsubsn, are defined as follows.

2.0-X (1, m)em 1.0=Sim(n,m)
|[subn]|

|skipn]|
[N1[+[Nz2|

|skipe|
[E1|+]Ee|

fskipn = fskipe = fsubn =

The matching score is defined as:

~ wskipn - fskipn 4+ wskipe - fskipe + wsubn - fsubn

1.0
wskipn + wskipe + wsubn

For example, in Fig. 1 the node ‘Delivery packed’ and its edge to the AND-join
in (1 are inserted, and so are the node ‘Delivery unblocked’ and its edge to the
XOR-join in G5. The AND-join in G is substituted by the second XOR-join in
G5 with a matching score of 0.5, while the node ‘Transportation planning and
processing’ in (1 is substituted by the node ‘Transporting’ in G with a matching
score of 0.32. Thus, the edge between ‘Transportation planning and processing’
and the AND-join in (1 is substituted by the edge between ‘Transporting’ and
the XOR-join in G, as both edges are between two substituted nodes. All the

other substituted nodes have a matching score of 1.0. If all weights are set to
7 11 2-0.54+2-0.68
it S = 0.64.

1.0, the total matching score for this mapping is 1.0 — T
Definition 5 returns the matching score given a mapping. To determine the
matching score between two business processes, we must exhaustively try all
possible mappings and return the one with the highest matching score. Various
algorithms exist to find the mapping with the highest matching score [2]. In this
paper we use a greedy algorithm [2], since its computational complexity is much
lower than that of an exhaustive algorithm, while having a high precision.

3 Merging Algorithm

The merge algorithm is defined over pairs of annotated process graphs. If we
want to merge two or more process graphs, we first need to annotate every
edge of each process graph with the identifier of the process graph, and every
node with a pair indicating the process graph identifier and the label for that
node. Then we can proceed to merge the annotated process graphs in a pairwise
manner. We first present the basic merge algorithm and then discuss a set of
reduction rules to simplify the merged process graph.



8 M. La Rosa et al.

3.1 Basic Algorithm

Given two annotated process graphs G; and G3 and their mapping M, the merge
algorithm (Algorithm 1) starts by creating an initial version of the merged graph
CG by doing an union of the edges of G; and Gs2, excluding the edges of G5 that
are substituted. In this way for each matched node we keep the copy in G; only.

Algorithm 1: Merge

function Merge(Graph G1, Graph G2, Mapping M)
init
Mapping mcr, Graph CG
begin
CG <= G1 UGz \ (G2 N sube)
foreach (z,y) € CG N sube do
ace(,y) < ag, (z,y) U ac, (M(z), M(y))
end
foreach n € N¢g N subn do
Yea(n) <= 76, (n) Uve, (M(n))
end
foreach mcr € MaximumCommonRegions(G1, G2, M) do
FG: < {z € dom(mcr) | ez N dom(mcr) = @}
foreach fGy € FGy such that | e fGi| =1 and | e M(fG1)| = 1 do
pfG, < Any(efG1), pfG, <= Any(eM(fG1))
xj <= new Node(“c”,“xor” ;true)
CG <= (CG\ ({(pfG,,fG1), (pfGy, fG2)})) U {(pfG,,xj), (PfGy, xj), (xj, fG1)}
ace(pfGy, X)) < ag, (pfGy, fG1), ace(pfGy, %)) < ac, (pfGy, fG2)
ace (X, fG1) < ag, (pfGy, fG1) U ag, (pfGs, fG2)
end
LGy < {z € dom(mcr) | z e N dom(mcr) = 0}
foreach IG; € LGy such that |IG1 e | =1 and [M(1G1) e | =1 do
sIGy <« Any(IGlo), sIGy <« Any(l\/I(IGl)o)
xs <= new Node(“c”,“xor” true)
CG < (CG\ ({(IG1,sIG1), (IGg, slG2)})) U {(xs,slG1), (xs,slGz), (IG1,xs)}
QCG (XS, S|G1) <~ Qg (|G1, S|G1), (o7 (XS, S|G2) << QGy (|G2, S|G2)
Occ(;(|Gl, XS) < ag, (|G1, SlGl) U ag, (|G2, S|G2)
end

end
CG < MergeConnectors(M, CG)

return CG
en

Next, we set the annotation of each edge in C'G that originates from a substituted
edge, with the union of the annotations of the two substituted edges in G; and
G5. For example, this produces all edges with label “1,2” in model C'G in Fig. 1.
Similarly, we set the annotation of each node in C'G that originates from a
matched node, with the union of the annotations of the two matched nodes in
G1 and Gs. In Fig. 1, this produces the annotations of the last two nodes of



Merging Business Process Models (Extended Version) 9

CG—the only two nodes originating from matched nodes with different labels
(the other annotations are not shown in the figure).

Next, we use function MazimumCommonRegions to partition the mapping
between G7 and Gy into maximum common regions (Algorithm 2). A maxi-
mum common region (mecr) is a maximum connected subgraph consisting only
of matched nodes and substituted edges. For example, given models G; and
G» in Fig. 1, MaximumCommonRegions returns the three mcrs highlighted by
rounded boxes in the figure. To find all mcrs, we first randomly pick a matched
node that has not yet been included in any mcr. We then compute the mcr of
that node using a breadth-first search. After this, we choose another mapped
node that is not yet in an mcr, and we construct the next mecr.

We then postprocess the set of maximum common regions M CRs to remove
from each mcr those nodes that are at the beginning or at the end of one model,
but not of the other (this step is not shown in Algorithm 2). Such nodes need
not be merged, otherwise it would not be possible to trace back which original
model they come from. For example, we do not merge event “Deliveries need to
be planned” in Fig. 1 as this node is at the beginning of G; and at the end of
Gs.

Algorithm 2: Maximum Common Regions

function MaximumCommonRegions(Graph G, Graph G2, Mapping M)
init
{Node} visited < 0, {Mapping} MCRs < §)
begin
while ezists ¢ € dom(M) such that c ¢ visited do
{Node} mer <0
{Node} tovisit < {c}
while tovisit # () do
¢ <= dequeue(tovisit)
mcr <= mcr U {c}
visited < visited U {c}
foreach n € dom(M) such that ((c,n) € G1 and (M(c), M(n)) € G2) or
((n,c) € Gy and (M(n),M(c)) € Gz2) and n ¢ visited do
enqueue(tovisit, n)
end
end
MCRs <= MCRs U {mcr}
end

return MCRs
en

Once we have identified all mcrs, we need to reconnect them with the remaining
nodes from G; and G5 that are not matched. The way a region is reconnected
depends on the position of its sources and sinks with respect to G; and G5. A
region’s source is a node whose predecessors are not in the region or do not exist;



10 M. La Rosa et al.

a region’s sink is a node whose successors are not in the region or do not exist.
If a source fG7 in G; and its matched node have exactly one predecessor each,
we insert a configurable XOR-join in C'G to reconnect the two predecessors to
the source. Similarly, if a sink [G; in G; and its matched node have exactly
one successor each, we insert a configurable XOR-split in C'G to reconnect the
two successors to the sink. We also set the labels of the new edges in CG to
track back the edges in the original models. This is depicted in Fig. 2. We
use function Node to create a new connector and initialize its identifier and
annotation, and function Any to return the element of a singleton set. The
postprocessing of M C Rs guarantees that either both a source and its matched
node have predecessors or none has, and similarly, that either both a sink and
its matched node have successors or none has.

G1 Gz CG
piGi®. @G,

pfG4 ’ Pfez’
| G, 4 G,

+ {cod(cs) = @
|G2 IG7

2
* sIG,

G  esiG

Fig. 2. Reconnecting a maximum common region to the nodes that are not matched.

In the example of Fig. 1, the first mcr is reconnected in CG via a new config-
urable XOR-split after its sink node “Shipment processing”; the second region is
removed after postprocessing M CRs; and the third region is reconnected via a
configurable XOR-join before its source node “Delivery is relevant for shipment”.

The cases in which a source has multiple predecessors (i.e. it is a join) or a sink
has multiple successors (i.e. it is a split) are covered by function MergeConnectors
(Algorithm 3). This function is invoked in the last step of Algorithm 1 and
it basically merges the preset and postset of matched connectors. Since every
matched connector ¢ in CG is copied from (G1, we need to reconnect to ¢ the
predecessors and successors of M(c) that are not matched. We do so by adding
a new edge between each predecessor or successor of M(c) and c. If at least one
such predecessor or successor exists, we make ¢ configurable, and if there is a
mismatch between the labels of the two matched connectors (e.g. one is “xor”
and the other is “and”), we also change the label of ¢ to “or”. For example,
the AND-join in the model G; of Fig. 1 is matched with the XOR-join that
precedes function “Transporting” in G3. The only non-matched predecessor of
this XOR-join is event “Delivery unblocked”. Thus, we reconnect the latter to
the AND-join that precedes function “Transportation planning and processing”
in CG via a new edge labeled “2”. Also, we make ¢ configurable and we change
its label to “or”, thus obtaining the model C'G in Fig. 1.



Merging Business Process Models (Extended Version) 11

Algorithm 3: Merge Connectors

function MergeConnectors(Mapping M, {Edge} CG)
init
{Node} S <= 0, {Node} J <= 0
begin
foreach c € dom(M) such that 7(c) = “c” do
S« {xeM(c)e | x¢cod(M)}
J <= {xeeM(c) | x € cod(M)}
CG = (CG \ UXES{(M(C)7 X)} U UXEJ{(X’ M(C))}) U Uxes{(C7 X)} U UxEJ{(Xv C)}
foreach x € S do
acc(c,x) < ag, (M(c),x)
end
foreach x € J do
acc(x, €) < ag, (%, M(c))
end
if |S| > 0 or |J| > 0 then
Ne <= true
end
if Ag, (c) # A, (M(c)) then
Acg(c) <“or”
end
end

return CG
en

3.2 Reduction Rules

After merging two process graphs, we can simplify the resulting graph by ap-
plying a set of reduction rules. These rules are used to reduce connector chains
that may have been generated after inserting configurable XOR, connectors. The
idea is to improve the visual presentation of the merged process graph while
preserving its behavior and its configuration options. These rules are: 1) remove
redundant transitive edges between connectors, 2) merge consecutive splits/joins,
and 3) remove trivial connectors (i.e. those connectors with one input edge and
one output edge), that may have been generated after applying the first two
rules. These rules are applied until a process graph cannot be further reduced.

Remove redundant transitive edges Function RemoveRedundantEdges (Al-
gorithm 4) removes all redundant transitive edges. A redundant transitive edge
is an edge whose source and target node are also connected via an alternative
path made of a connector chain. Thus, the source of a redundant edge must be
a split connector, while its target must be a join connector. Given two nodes m
and n where m is a split, n is a join and m is connected to n via a redundant
transitive edge, we first remove the redundant transitive edge. Next, we set the
label of each edge in the connector chain to the union of the edge’s label with
the label of the redundant edge being removed. Finally, for each connector ¢ in



12 M. La Rosa et al.

the connector chain, we set its annotation with the union of its annotation and
the annotation of m, we make it configurable and if there is a mismatch between
its label and that of m, we change the label to “or”. We use function Alphabet
to retrieve the set of nodes in the connector chain. Fig. 3 shows the application
of this rule.

Algorithm 4: Remove Redundant Edges

function RemoveRedundantEdges({Edge} CG)
begin
foreach (m,n) € CG such that [me| > 1 and | en| > 1 and ezists a path
peCG suchthatp:m‘indo
CG < CG\ {(m,n)}
foreach (x,y) € CG such that x € Alphabet(p) and y € Alphabet(p) do
a(x,y) < a(x,y) Ua(m,n)
end
foreach c € Alphabet(p) such that 7(c) = “c” do
(€)= (c) Ury(m)
n(c) < true
if A(c) # A(m) then
Ac) <“or”
end
end
end

return CG
en

3
GO N, O
< ! Remove \?
f Redundant
1%3 /
5
) 1,35

233 1 Edges
l 5
" - on ' “' "
. ;;34;'\ |. g any connector
23 135 any configurable 23
i T connector i T

Fig. 3. Removing redundant transitive edges.

Merge consecutive splits/joins Function MergeConsecutiveConnectors (Al-
gorithm 5) merges any two consecutive splits/joins into a single split/join con-
nector. The preconditions for applying this rule are that there are no redundant
transitive edges, and that at least one of the two connectors is a configurable



Merging Business Process Models (Extended Version) 13

XOR that has been added by Algorithm 1. The latter condition is checked by
function IsAdded which takes an edge as input and returns true if the edge’s
source or target is a configurable XOR added by the merge algorithm. Given
an edge (m,n) where m and n are both splits, we merge m into n. First, we
remove all edges connected to n and reconnect the successors of n to m via new
edges. Next, we set the labels of the new edges with the labels of the edges be-
ing removed, and we set the annotation of m with the union of the annotations
of both connectors. Finally, we set the annotation of m with the union of its
annotation and the annotation of n, we make m configurable and if there is a
mismatch between its label and that of n, we change the label to “or”. The case
of two consecutive joins is the opposite. Fig. 4 shows the application of this rule.

Algorithm 5: Merge Consecutive Connectors

function MergeConsecutiveConnectors({Edge} CG)
precondition no redundant transitive edges
begin
foreach (m,n) € CG such that 7(m) = 7(n) = “c” and IsAdded((m, n)) = true
do
if  me|>1and|ne|>1then
€6+ (C6\ {(m. M} UU,cpu {(09}) UUL ey {(m, )}
foreach x € ne do
a(m,x) < a(n,x)
n
7(m) = (m) U~ (n)
n(m) < true
if A(m) # A(n) then
A(m) <“or”
end

0
o

ot

end
else if [em| > 1 and |en| > 1 then
CG < (C6\ {(m.m)} UU,cop{ (M)} U U, com{ (1)}
foreach x € em do
a(x,n) < a(x,m)
end
v(n) <= y(m) U~y(n)
n(n) < true
if A(m) # A(n) then
A(n) <“or”
end
end
end

return CG
en




14 M. La Rosa et al.

12
/é\ - /@{XO’V
/2 ! Merge > 1

}.’\ Consecutive / l \

LN Splits

. < / — |
! 2 Merge \®<X orV

Consecutive 12

Joins 1

Fig. 4. Merging consecutive splits and joins.

Remove trivial connectors. Function RemoveTrivialConnectors (Algo-
rithm 6) removes all connectors that have one input edge and one output edge
only. Such connectors do not contain any needful information. Thus, we can get
rid of them without losing any process behavior. The precondition for applying
this rule is that the trivial connector must be configurable but it can be any
configurable connector, i.e. not necessarily a configurable XOR that has been
added during the merge. In fact, a trivial connector may be generated from ap-
plying MergeConsecutiveConnectors and RemoveRedundantFEdges. We get rid of
a trivial connector m by removing the edge from its single predecessor pm and
the edge to its single successor sm. Next, we reconnect pm with sm with a new
edge, whose annotation is set to the union of the annotations of the two edges
being removed. Fig. 5 shows the application of this rule.

Algorithm 6: Remove Trivial Connectors

function RemoveTrivialConnectors({Edge} CG)
begin
foreach m € N¢g such that 7(m) =“c” and |em| = |me| =1 and n(m) =
true do
pm = Any(em), sm = Any(me)
CG < (CG\ {(pm, m), (m, sm)}) U {(pm, sm)}
a(pm,sm) < a(pm, m) U a(m, sm)
end

return CG
end




Merging Business Process Models (Extended Version) 15

| |
z 1 2
C\L§ L) 'J§ '\Lﬁ
73 4 2 - . )71431‘ )
: 1r2 Remove Trivial r 11'2
¢ i Connectors N 1
1,2
N

Fig. 5. Removing trivial connectors.

4 Evaluation

The proposed algorithm for process merging has been implemented as a tool
that takes as input two EPCs represented in the EPML format, and produces
a configurable EPC also represented in EPML. This process merging tool is
freely available as part of the Synergia toolset for configurable process modeling,
downloadable at http://www.processconfiguration. com.

To evaluate the merge operator and its implementation, we conducted a
number of tests aimed at evaluating: (i) the basic properties of the operator;
(iil) the size of the merged models; and (iii) the scalability of the operator.

Operator’s properties. We first undertook to test that the merge operator
is idempotent, commutative and associative. The first property means that the
merger of a model with itself leads to itself (after excluding the annotations
added during the merge). This is a property one would expect in any merge
operator. The latter two properties are desirable as they entail that the operator
can be used for multi-way merging, i.e. given a collection of process models, one
can merge them in a pairwise manner and the order in which the merge operator
is applied is not important. Finally, we sought to validate that the input models
could be derived back from the merged model, as per the third requirements in
Section 1.

To this end, we took a configurable process model for film post-production
designed in collaboration with domain experts from the Australian Film, Tele-
vision & Radio School. The model had 14 possible individualizations, which we
generated using the Synergia tool. We tested idempotence by merging every in-
dividualized model (i.e. variant) with itself. We then checked commutativity and
associativity by merging each subset of the 14 variants (i.e. every pair, triplet,
etc.) in every possible order. When merging all 14 variants, we obtained the
same configurable process model from which we had derived the 14 variants,
thus confirming that the original models can be derived from the merged one.

Size of merged models. The second part of the evaluation aimed to compare
the sizes of the merged models to the sizes of the input models. Size is a key
factor affecting the understandability of process models and it is thus important
that merged models are as compact as possible.



16 M. La Rosa et al.

We took the SAP reference model, consisting of 604 EPCs, and constructed
every pair of EPCs from among them. We then filtered out pairs in which a model
was paired with itself and pairs for which the similarity between the models was
less than 0.5. Thus, we were left with pairs of similar but non-identical EPCs.
After this filtering step, we obtained 78 model pairs.

Next, we merged each of these model pairs and calculated the ratio between
the size of the merged model and the size of the input models. This ratio is called
the compression factor and is defined as CF (G, Ga) = |CG|/(|G1|+|Gz]|), where
G and G are two process graphs and CG is the result of merging G; and Gs.
A compression factor of 1 means that the size of the merged model is equal to
the sum of the sizes of the input models, which means that the merge operator
merely juxtaposes the two input models side-by-side. A compression of 0.5 means
that the size of the merged model is equal to the average size of the input models.
This situation may occur when the merged models are very similar and thus the
merged model is essentially equal to one of the input models.

Table 1 presents the results of merging the selected pairs of models from the
SAP reference model. The first and second column show the size of the initial
models. The third and fourth column show the size of the merged model and
the compression factor before applying any reduction rules, while the remaining
two columns show the size of the merged model and the compression factor after
applying the reduction rules. The table shows that the reduction rules improve
slightly the compression factor (average of 72% versus 75% before reduction
rules), but the main compression is given by the merge algorithm itself. In other
words, by identifying and factoring out common regions during the merge pro-
cedure, we already obtain models that are significantly smaller than those that
one would obtain by simply juxtaposing the merged models against one another.

Size 1|Size 2|Size merged|Compression|Merged after|Compression
reduction after reduction

Min | 3 3 5 0.5 5 0.5
Max | 118 | 130 195 1.03 188 1.0
Avg. |22.59|23.03 32.28 0.75 30.82 0.72
Stdev| 20.5 | 20.5 26.57 0.17 25.14 0.16

Table 1. Size statistics of merged SAP reference models.

The more two process models are similar, the smaller is the compression
factor of the merged model. Figure 6 provides a scatter plot showing the com-
pression factors (X axis) obtained for different similarity measures between the
input models (Y axis). The solid line is the linear regression of the points.

Scalability. Finally, we conducted tests with real-life process models of large size
in order to validate the scalability of the approach. To this end, we considered
four model pairs of models. The first three pairs of models were provided by
a large insurance company. The models capture processes for handling claims
for motor incidents and for personal injury incidents. The first pair of models



Merging Business Process Models (Extended Version) 17

Model similarity

R2=0,6737

04
04 05 06 07 08 09 1 11

Reduction factor

Fig. 6. Correlation between similarity of the input models and compression factor.

corresponds to the claim initiation phase (one model for motor incident and
one for personal injury), the second pair of models are for claim lodgment and
handling and the third pair are for payment of invoices associated to a claim.
Together, these models cover the entire end-to-end process for claims handling.
Each pair of models has a high similarity, but they diverge in certain points due
to differences in the object of the claim (vehicle vs. personal injury). At the time
the models were provided to us, a team of five analysts at the insurance company
had been manually merging the process models. It took them 600 man-hours to
merge 25% of the end-to-end process models. This manual effort was interrupted
when the team learned that the effort could be automated using our approach.

A fourth pair of models was obtained from an agency specialized in appli-
cations for developing parcels of land (mainly for commercial purposes). One
model captures how land development applications are handled in South Aus-
tralia while the other captures the same process in Western Australia. The sim-
ilarity between these two models was high because they cover the same process
and were designed by the same analysts. However, due to regulatory differences,
the models diverge in certain points.

Table 2 shows the sizes of the input models, the execution time of the merge
operator and statistics related to the size of the merged models. The tests were
conducted on a laptop with a dual core Intel processor, 1.8 GHz, 2 GB memory,
running Microsoft Vista and SUN Java Virtual Machine version 1.6 (with 512MB
of allocated memory). The results show that the merge operator can handle pairs
of models with around 350 nodes each in a matter of seconds. Models with less
than 50 nodes are merged in sub-second times — an observation supported by the
execution times we observed when merging the pairs of SAP reference models.
Table 2 also shows the size of the merged models and the compression factors
for the insurance and land development processes. The numbers for the first and
third model pair are in line with those observed for the SAP reference models.
The compression factors for the second and third pairs are on the high end. Closer
inspection of these pairs of models showed that they had strong differences.



18 M. La Rosa et al.
Pair #/|Size 1|Size 2|Merge time|Size merged|Compression|Merged after| Compression
(in sec.) reduction |after reduction
1 340 | 357 16.04 491 0,70 470 0.67
2 22 78 (1.02 88 0,88 87 0.87
3 469 | 213 [3.76 598 0,88 590 0,87
4 200 | 191 [1.03 296 0,76 286 0,73

Table 2. Results of merging land development and insurance models.

5 Related Work

Gottschalk et al. [4] study the problem of merging pairs of EPCs. Their technique
first constructs an abstraction of each EPC, namely a function graph, in which
all connectors are removed and replaced with annotations attached to the edges.
Function graphs are merged by means of set union. The connectors are then
restituted by inspecting the annotations attached to the edges in the merged
function graph. This approach does not address the second and third criteria in
Section 1: there is no information in the generated EPCs allowing one to trace
the origin of each element nor to derive the original models from the merged
one. Also, they only merge two nodes if they have identical labels, whereas our
approach supports approximate matching. Finally, they assume that the input
models have a single start and a single end event and no connector chains.

Li et al. [9] propose another approach to merging process models. Given
a set of similar process models (the “variants”) their technique constructs a
single model (the “generic” model) such that the sum of the change distances
between each variant and the generic model is minimal. The change distance is
the minimal number of change operations needed to transform one model into
another. This work does not fulfill the three criteria in Section 1. The generic
model does not necessarily subsume any of the initial variants and there is no
information for tracing the origin of the elements in the generic model.

Sun et al. [11] describe yet another approach to process model merging in the
context of Workflow nets. Their approach starts from a mapping between tasks
in the two process models. Mapped tasks are copied into the merged model
directly. On the other hand, regions where the two process models differ, are
merged by applying a set of “merge patterns” (sequential, parallel, conditional
and iterative). This procedure requires input from the modeler. The proposed
technique does not fill any of the criteria in Section 1: when the sequential, par-
allel or iterative merge operators are used, the merged model does not subsume
the initial variants. Also, the merged model does not provide traceability. Finally,
their merging technique only works for block-structured process models.

Kuster et al. [6] outline requirements for a process merging tool. Their em-
phasis is on merging models in the context of version conflicts. Their envisaged
merge procedure is not intended to be fully automated. Instead the aim is to
assist modellers in resolving differences manually. In [5] they show how changes
between pairs of models are detected and classified in their tool.

Ryndina et al. [7] propose a method for merging state machines describing
the lifecycle of independent objects involved in a business process, into a single



Merging Business Process Models (Extended Version) 19

UML activity diagram capturing the overall process. Because the aim is to merge
partial (and disjoint) views of a process model, their technique significantly dif-
fers from ours. In [7], the problem of merging tasks that are similar but not
identical is not posed. Similarly, the lifecycles to be merged are assumed to be
consistent, which eases the merge procedure. Finally, they do not consider the
traceability requirement formulated in Section 1.

6 Conclusion

The paper presented a merge operator that takes as input a pair of process
models and produces a (configurable) process model. The operator ensures that
the merged model subsumes the original model and that the original models can
be derived back by individualizing the merged model. Additionally, the merged
model is kept as compact as possible in order to enhance its understandability.

The merge operator was implemented and evaluated using process models
from practice. The evaluation showed that the merge operator is idempotent,
commutative and associative. The commutativity and associativity properties
make the operator suitable for merging collections of three or more models.
The evaluation also demonstrated that the operator can deal with models of
realistic size (even hundreds of nodes per model) and that the merged models
are significantly smaller than the sum of the sizes of the original models. For a
set of 78 model pairs from the evaluation, the compression factor of the merged
process models was 0.76, meaning that they are 76% of the size of the models
from which they were derived.

The proposed merge operator creates a model that is a union of the input
models. In some scenarios, we are not interested in the union of the input models,
but rather in a “summarized version” of the input models showing the most
frequently observed behaviour across the input models. In future work, we plan to
define a variant of our merge operator that addresses this requirement. Also, the
merge operator proposed in this paper assumes that the input models are “flat”,
i.e. they are not decomposed into sub-processes. When merging process models
with sub-processes, we would ideally want to preserve the process decomposition.
Addressing this limitation is a direction for future work.

References

1. H. Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters, 18(8):689-694, 1997.

2. R.M. Dijkman, M. Dumas, and L. Garcia-Ba nuelos. Graph matching algorithms
for business process model similarity search. In Proceedings of the 7th International
Conference on Business Process Management (BPM), LNCS. Springer, 2009.

3. R.M. Dijkman, M. Dumas, L. Garcia-Ba nuelos, and Reina Kéarik. Aligning busi-
ness process models. In Proceedings of the 13th IEEE EDOC Conference. IEEE
Press, 2009.



20

4.

10.

11.

12.

M. La Rosa et al.

F. Gottschalk, W. M. P. van der Aalst, and M. H. Jansen-Vullers. Merging event-
driven process chains. In Proceedings of the Confederated International Conferences
“On the Move to Meaningful Internet Systems”, volume 5331 of LNCS, pages 418—
426, Monterrey, Mexico, November 2008. Springer.

J. Malte Kiister, C. Gerth, A. Forster, and G. Engels. Detecting and resolving
process model differences in the absence of a change log. In Proceedings of the 6th
International Conference on Business Process Management, volume 5240 of LNCS,
pages 244-260, Milan, Italy, September 2008. Springer.

J.M. Kiister, C. Gerth, A. Forster, and G. Engels. A tool for process merging
in business-driven development. In Proceedings of the Forum at the CAiSE’08
Conference, volume 344 of CEUR Workshop Proceedings, pages 89-92, Montpellier,
France, June 2008. CEUR-WS.org.

J.M. Kiister, K. Ryndina, and H. Gall. Generation of business process models for
object life cycle compliance. In In Proceedings of the 5th International Conference
on Business Process Management, volume 4714 of LNCS, pages 165—181, Brisbane,
Australia, September 2007. Springer.

I Levenshtein. Binary code capable of correcting deletions, insertions and reversals.
Cybernetics and Control Theory, 10(8):707-710, 1966.

C. Li, M. Reichert, and A. Wombacher. Discovering reference models by mining
process variants using a heuristic approach. In Proceedings of the 7th International
Conference on Business Process Management, volume 5701 of LNCS, pages 344—
362, Ulm, Germany, September 2009. Springer.

M. Rosemann and W. M. P. van der Aalst. A configurable reference modelling
language. Information Systems, 32(1):1-23, 2007.

S. Sun, A. Kumar, and J. Yen. Merging workflows: A new perspective on connecting
business processes. Decision Support Systems, 42(2):844-858, 2006.

B. F. van Dongen, R. M. Dijkman, and J. Mendling. Measuring similarity between
business process models. In Proc. of CAiSE 2008, volume 5074 of LNCS, pages
450-464. Springer, 2008.





