Resource-Centric Worklist Visualisation

Ross Brown! and Hye-young Paik?

! Faculty of Information Technology,
Queensland University of Technology, Brisbane, Australia
2 School of Computer Science and Engineering,
University of New South Wales, Sydney, Australia
r.brown@qut.edu.au, hpaik@cse.unsw.edu.au

Abstract. Although business process management has been a major
area of ICT research, no coherent approach has been developed to address
the problem of business process visualisation to aid workers in the process
of task prioritisation. In this paper we describe the development of a new,
coherent approach to worklist visualisation, via analysis and development
of a resource-centric view of the worklist information. We use instances
of generic resource types as workflow elements that may be considered by
workers when interacting with worklists. We then propose a generic 2D
framework for visualising the resources, creating an effective mapping
between a task and the capabilities of the resources. This aims to aid
the process of task selection and prioritisation by workers. A worklist
visualisation system has been implemented as an extension to an open-
source workflow system, YAWL (Yet Another Workflow Language).

1 Introduction

Visualisation techniques offer powerful tools for understanding data and pro-
cesses within complex systems. However, visualisation in the area of Business
Process Management (BPM), and in particular workflow management systems,
lags behind the state of the art in other areas such as medicine, engineering and
mining [1].

Workflow Management Systems (WMS) play a vital role in BPM in that the
business process models are implemented and executed through a WfMS, which
routes and dispatches the tasks defined in a model to the individual workers®.
The result of routing tasks is presented to the workers as a worklist. A worklist
can be understood as a to-do list of tasks that the workers need to carry out in
order to complete the process defined by the model.

The success of business process models depends on communicating them
to the model consumers effectively. However, modern workflow systems have
largely overlooked the needs of the workers in understanding their given tasks
in a manner that would help manage them efficiently. For example, it is quite
common that workers would have questions such as “how urgent is this task?”,

! The workers are the consumers of the model who will carry out the tasks. In this
paper, we use the terms workers and model consumers interchangeably.

“who else can do the task?”, “where do you have to go to carry out the task?”
(eg., where is this meeting room B809), “do I have enough resources?” (eg., are
there enough chairs for 20 people in the meeting room B809), etc.

A typical representation of a worklist includes a list of tasks with short textual
descriptions, and/or attachments (eg., email, document forms, etc). It, however,
does not include any support (context) information about the tasks that may
assist the worker in planning the tasks. At any point in time, a given worker may
be involved in many workflows and may thus be presented with a large to-do
list. The worker needs to have available tools to help them decide which would
be the best task to undertake next.

We believe that visualisation techniques can be applied to many areas of
BPM due to their previous use in application domains that support decision
making processes. In decision support systems, information is typically provided
to enable the user to be adequately informed as to the direction to be taken for
a particular scenario. This applies to all levels of business systems, and to BPM
as a whole. For the purpose of this paper, we limit the scope of the work to
the area of workflow management, in particular, managing worklists. We apply
a visualisation technique to provide workers with information about the context
of a task, in order to improve their understanding of the process models and the
communication of such models between the model designers and the consumers.
The visual information is designed to help workers make decisions in managing
worklists (eg., accepting, postponing, delegating, or rejecting tasks).

In this paper, we present a generic visualisation framework that is used to
provide support (context) information about the tasks in a worklist. Our contri-
butions are three fold:

— An analysis of the decision making process in managing workflow tasks,
especially in relation to the resources available to the worker;

— A novel and generic visualisation technique for worklists;

— The implementation of the framework as a proof of concept.

The rest of the paper is organised as follows. Section 2 investigates the state
of the art in worklist visualisation. Section 3 describes the general approach to
using these visualisations in workflow systems. Section 4 details the development
of a resource centric approach to the management of worklists. Sections 5 and 6
explain the mapping of important worklist resources to appropriate visualisation
techniques to aid the process of task selection by workers. Section 7 details the
implementation of a visualisation system incorporated into a workflow system.
The paper then concludes with a discussion of future work in Sect. 8.

2 Related Work

Computerised data visualisation is a broad field that has its beginning in pic-
torial representations used in pre computer technology times [2]. Today it has
developed to the point of being one of the main areas of application for com-
puter graphics, and is a powerful tool for the analysis and presentation of data.

Many areas in science and mathematics have benefited from the exploitation of
modern computing power in data exploration [1]. Business experts are now us-
ing advanced computerised visualisations to analyse multi-dimensional business
data and processes. The main purpose of the technique is to allow the users to
observe trends or patterns by exploring structured and domain-specific informa-
tion. (e.g., Figure 1 shows an example of a software solution for business data
visualisation).

||Bre et gen Data Took Guides Widow Help |
ol ||cpd|swafn||enexran ||[E203||=E=
| W Scatter Piot G A=A Aoar chare —o/x uerynavku [BE|
8| 986 480 il %0

1000
‘S04 861 e

e 850,326 23628 617.54

T = Assay H1(C50)

ol 5% Plte

e
669765 N
613968 Fow
600 75667 551089 (0]

0.

500 Column)
1 2
402677 v az

o Details-on-Demand lx
[Coumn Ve A

) 7]

Malwt. 35443

Plae 3

Row

200,

20

Column 7

= LEMS s

0 (50 252

. Invivoctiiy 10

og01 .o Assay #I(C5) 1435185
Ll Assay #2C50) 280163 -

X 1] o1 i 10 1000 | 6 10 2 3 4 % € 70 6 %0 160 ||| Fiieneu 0 =

0 mivosciy
= Scoerit =
[— Y | T
0 o
Yyus [—]

{1

Pie Chart

[) o ° . ° o . g

Te|~ R2imis

/ Cuve: i) =1000+
L Cuve:) =100

£ Curve Fi 2nd order
Polynonial, usig selected

CaHS: © L L L @ & ®

CBHI1 e}

®
®
L
O
®
®
®

{ recuids ol
H a+ b+ cPone(s. 2)

=1
Cans
C5Hs
CPHT-
CeHg
caHan
oH2

R2=3131E,

5| 1=l LY b- 422,

[Tal i s ~ || 23] [peat ~ || || e - Ssee5 -
0 & PeChat |/ BarChat Size by LD(S)

|1 /960 out of 960 records viskle (100.00 %), 0 marked @sporie 4

ol
|
§

Fig. 1. Spotfire by Tibco: Visualisation of Process Data for Analysis

The focus of our discussion in this paper, though, is in the area of visualising
business processes and individual tasks generated by them. Hence, we discuss the
related work in the context of business process visualisation and worklist/tasks
visualisation.

2.1 Business Process Visualisation

The present state of play for the visualisation of business processes uses various
graphical notations to abstract internal (complete) processes into public (basic)
processes in order to hide the complexity and implementation details in the
process specifications[3-5].

For instance, Figure 2 shows a technique which abstracts a complex business
process via aggregating related activities[4]. [5] applies similar principles to a
YAWL (Yet Another Workflow Language) business process model.

Fig. 2. An example of a business process view

Some have explored the use of 3D extensions to 2D to 3D representations
using such techniques as Cone Trees [6, 7], to full virtual reality implementations
for distributed interaction with process models [8].

To provide more interactive way of analysing business processes, the idea
of graphically querying business processes is proposed in [9,10]. For example,
Figure 3 shows a user querying 'Does this business process requires login before
searching’. In [10], an exploratory (or browsing) approach, rather than directly
querying, is used to visualise automated and repetitive scientific workflow speci-
fications. Currently, such querying is only made possible for static processes (i.e.,
specifications) and does not apply to running’ instances of the processes.

T BRPOL Guery Editor S L1

-

serviceSTraveler

-

= = bBehawvicour
- ackion

<5 Swwitch o =S
= co... =
=88 Inwv. ..
> Replhy
458 Rec. ..
= Fork
== Join

..

Database

e

== wari...

B Obiect

composite

Fig. 3. Visually Querying a Business Process

2.2 Worklist /Tasks Visualisation

The visualisation techniques mentioned above can help the user better under-
stand the business process specification. However, they cannot assist him/her
with effectively managing the tasks allocated to them by the processes, as visu-
alisation does not provide take the concept of individual ’activities’ or *tasks’ and
any background information about them into consideration (e.g., how important
is this task?, how is this related to my previous task?).

Figure 4 shows a typical worklist view of modern business process manage-
ment systems. From the user’s view point, tasks generated by a running business
process are only represented as a list of brief textual description.

e®*® Logged in as: user Log Out

JB
o

Manage: _Processes | Tasks

1D |Name Pooled Actors | Assigned To | Status Start Date |[End Date | Actions
MnMrs e

38 [Organize dance lessons Artist development Not started

40 | write songs Songwriter Not Started
45 [Deferment Request user Not Started

JBoss JEPM Administration Console

Fig. 4. JBPM by JBoss: A Worklist

Most project management software will support creation, allocation and
tracking of task completion in a business organisation environment (Figure 5).
However, the process of generating and allocating tasks is highly ad-hoc and
manual and visualisation techniques used are rather crude.

More creative approaches to organising tasks can be found in a PC desk-
top environment. Many desktop calendar applications will let the users cre-
ate events or tasks which are visualised in a two dimensional space (time and
dates). iChronos (Figure 6) attempts to provide an integration between multiple
PC desktop applications (calendar, address book, file folders, etc.). The idea of
providing an integrated environment for managing tasks and task related data
is presented in the newly emerging research area called “Personal Information
Management (PIM)”[11].

However, the approaches in PIM are heavily focused on capturing and mod-
elling information stored in a person’s computer. The applications have not yet
incorporated the business process concepts such as “process definition”, “process
execution” “tasks” or “tasks allocation”, etc. into account. As demonstrated by
the research prototypes such as Haystack[12] and iDM[13], a PIM system aims
to provide a conceptual framework in which the relationship between personal
“information” is defined according to how the user perceived and retrieved in a
way that is meaningful to the user.

Although our project can benefit from the lessons learned in the PIM area, we
believe that there is much work to be done in appropriate visualisation of tasks
and business processes that produce the tasks. While there has been evidence

Tasktist | Task Tree | Calendr | Resourcelist
R ICEIR 3 i L)
& ToskGroups on Tosk Lt Ve @3 1
k| & &
e o s spezieoe Oh O Adiistrator
@ 1. Gatting Started 5. sfzzjz008 0h Om Admiristrator
o z0dfngThePost 9 9 s T
@ 3. FnngTheproees 1515 o
& 4. Monioring The Froject 15 15
& 5. Closing Down 0 10
@ mmooe 0 0
& Ivan Susarin o o
: il i el ol i the project sbout | | 1
e — A Write parsonal tharks notes to project 0% S Closng Created 42512008 Oh O Adsiiristrator
T Fiters - Tesk Lt 220
= Celebratethe doce downwating your tesmy | 0% 5. Closna cresed | sfzsjzone oh 0 adiistrator
Curent ¥ [‘Getthe business case approved by serior | (. |1 Getng |, 3fzsfz008| 3p2sfe008 | 32612008 Oh O Admiistrator Tvan
= Comman 4] Wirte groject defriton statenent C S 312002008 | spz0jeccs | 202008 | ch om adeistraor Tven
e Define reas beincluded i the project scope D% (2. Defiong |y, |3#3142008| 3312008 | 3/31/2008 O O Admiatrator | 3o& Block.
D] 10 f escrbewhat eachperson does inthepropc S 2 Defiina | afeSi2008 | spzsjecce 32912008 | ch om adwisrato Emst
Status v 12 A Think ho shoud bein the project team Wizsw zOefining |y 3fe0jem0s sa0feons 3fzofo0s h O Admiiatratar Emst
Py v) Form a group of project managers B 5% 2oeoen o 3242008 3f29f2005 | 12200 | ch O Administrator e Black
= By Date Hoka naetng it al concamed I 10% Z0efeg o inrogess @ Nomal | 3/20/2008 | 32072008 | 92002008 | o O Achmstrator o lack |
Date Range. - [Bevelop busiess case far the project N 1 Gt || Completed | @)Normel 311212008 | 371212005 | 3132008 6h O Adminstrator Yoo Black.
Date Created - e any by risks 2voidng detals N 1 Gettng | Complted | @ Mol 311212008 aji2ja0ms | 31212008 O O Acistratar o2 Black
Date Last Moc. - \Consult a Finance expert R 1 G0 || Compieted | @ Normel /1412008 371412005 | 31412008 6h O Admiristrator EMSt
= By Resource 16entFy sl concemed nthe project 0w (LGeng | ilcresed |Ellew 9108 313200 91112005 | o om Adminstrater Pohn Doe |
Qwner v List all the activities in work breakdorm 0% 3 Fanning Crested | [dllow 34j2008 Gh O Admiistrator
Assigrment =l |y Ensure each team member has the shils W% 20sing | inprogress [owest 31712008 ajunjaoms | 31712008 Ch O Adkmiiztrator Emst
Depertment v ——
Custom Ficld v ohiom ~
% hotications: ZED Permissions
Sl @ &, p
Date Created Gedor | Tekoow A
[2]Make sure the project fits company agenda 3/28/2007 11:27 John Doe 1. Getting ¢ Roks. View | ER Delte ngpermiss
| Actual Time: ohom -> 0h 30m Untimited. 1 Alow(e| 1 Alow| 2 alow® " Alow(E
[2] Make sure the project its company agenda | 3/26/2007 11:27 John Doe 1. Getting ¢ 1 lom(E| 2 dlom(E| 2 Alow(E| 2 Alow(E
Due dote: 3/10/2008 -> 3/13/2008 ernst Necvestny &7 Demy(E| &7 Demy(E| £ Demy(E| £ Demr(E
[2]Make sure the project fits company agenda |3/28/2007 1127 John Doe 1.Getting ! | Lvan Susenin 2" Dery(E| 2" Demy(E| 2" Deny(E| 2" Demy(E
Priority: High - > Highest | 3oe Black 2" Deny(E| " Deny(E| " Deny(E| 2" Deny(E|
Complete: 70.00 %-> 75.00 % vy 6 o 6 tlow(e| 2 Alowe 2 Deny(E

| | Wokes |35 Commerts | 1 Atochments |2, Resource Assnment | 42 Pesmisions

Fig. 5. A Screenshot from VIP Task Manager

@ Linda Cark’s birthday!
[J &2 15:00 Meeting with Linda

Fig. 6. iChronos

of research into user requirements for business process modelling [3, 14], much
work still remains with regards to the following:

— Data gathering for requirements analysis, the current research is often tied
to software implementations which restrict creative solutions;

— No real evidence of systematic analysis of sophisticated 2D and 3D visuali-
sation techniques for use in complex business process models;

— Abstract representational techniques are often ignored despite their power
in representing multi-dimensional data that occurs in business systems;

— Application domain information is not factored into the representations;

— No assessment of visualisation effectiveness via real case studies.

What is needed is a thorough data gathering-based analysis of user require-
ments for the visualisation of business processes, and the analysis of 2D/3D
techniques and visualisation wisdom for such representations. In particular, the
area of concurrent process visualisation [15] is expected to provide many useful
visualisation techniques. Furthermore, there is a need to provide an approach
to visualisation of business processes that accounts for domain specific factors
in their representations. Such a visualisation approach needs to allow for both
the designers and the users of the business process model, as both these people
have different requirements for visualisations, with regards to design, analysis,
and usage tasks [16].

What these other workflow visualisation techniques lack is a focus on sup-
porting information to assist the worker in managing the tasks in a worklist.
Each of the techniques provides a presentation of the worklist that is rudimen-
tary in nature, lacking any support information for the main task required by
a workflow system; deciding to accept, delegate or suspend a presented task.
We believe this should be the main reason for such workflow visualisations, and
that an analysis of this choice process and derivation of appropriate visualisation
techniques is required to support this process.

Analysis of such requirements is best taken from a resource oriented point of
view [17], as the available resources in an organisation control the acceptance or
rejection of the task? into the active worklist of the worker. We now proceed to
analyse this worklist management problem from a resource perspective, in order
to derive appropriate worklist visualisations.

3 Worklist Management

Before we introduce the concept of resources and their visualisations in work-
lists, we first discuss a theoretical background for generating a worklist from a
workflow. That is, how tasks are generated for the worker.

3.1 Worklist Generation

[17] offers a meta model of a resource. A resource can be human or non-human,
although in this section the discussion is focused on human resources. Figure 7
describes a part of the meta model which focuses on human resources. In the

2 By rejection of tasks, we mean choosing not to accept the task. Such tasks can be
delegated, suspended, or re-allocated by the workflow system.

ResourceType
(indicator)

4 | Descnptlon s
has -‘____,f I
has.ﬂsOf Capability
i

has/isOf

Organisational

isMemberOf P ——

- P ~
.~ Position *,

- participate in >, Name _.
incorporates

Fig. 7. Object Relational Model of Organisational (Human) Resource Perspective

model, a human resource has a set of capabilities (eg., a manager can approve
orders) and may occupy one or more positions. This means that s/he can perform
multiple roles in an organisation, or even in a particular workflow. A human
resource also can delegate activities to other resources (either human or non-
human). Also, it is reasonable to assume that a resource can be substituted by
another resource with similar capacity or characteristics. In the following, we
explain how tasks are allocated to human resources, which will create a worklist
for the worker.

For the sake of clarity, we use the term worker to mean a human resource.
The way in which worklists are generated is related to how a worker becomes
bound to a specific work item (task) for execution. A worklist for worker A can
be understood as a list of tasks bound to worker A by the workflow system.

For a better understanding of worklist generation, we look at Fig. 8 which
explains the life cycle of a task, from the time of creation to its final state. A
final state could be either completion or failure. Each box is the state of the task
in a running workflow case. The prefix S and R refer to actions enacted by the
Workflow System and the Resource (worker) respectively. Once created, a task
can be offered to a single worker, directly allocated to a single worker, or offered
to multiple workers.

Being “offered” means that the worker may have a choice in his/her worklist,
in that the task can be accepted or rejected. The “allocated” tasks are normally
expected to receive firm commitment from the worker. After this offering and
allocation process, tasks will appear in workers’ worklists and each worker may
start the task. Again, once the task is started, it is reasonable to assume that
the task may (i) be completed, (ii) suspended (eg., the worker may have to wait
for some events to occur or acquire extra resources), (iii) fail. In the following,
we look into some of the patterns in this life cycle [17] which, in turn, will help
us understand the patterns in worklist generation.

Offered to

a single suspended
resource R:start s
R:suspend R:resume
R:allocate_s
S:offer_s -
L J
S:create S:allocate al‘oc"flmd 0 [Astart R:complete
— ™| Created * asingle » started * completed
resource

S:offer_m B _| R:fail

r

Offered to Ristart_m

multiple
resources

failed

Fig. 8. Illustration of task life cycle; modified from [17]

3.2 Patterns for worklist generation

Push Patterns : The name comes from the fact that the system will “push”
a task to a worker. As explained in the life cycle, pushing can be either by
allocation or offering (refer to Transitions S:offer_s, S:offer_m, S_allocate_s and
S_allocate_m in Fig. 8). Also, a task can be offered to a worker or multiple
workers. Note that when a task is pushed to more than one worker, the system
is looking for a volunteer to accept the task.

Visualisation and worklist interactions: It should be clear to the worker (eg.,
using colour coding) whether a task is allocated, or offered, as it implies a dif-
ferent level of responsibility from the worker. Also, when a task is offered to
multiple workers, the worklist should be able to present such tasks as a form of
advertisement (eg., a popup window, rolling text, etc.) so that the offer can be
noticed by workers immediately. The allocation process often targets the work-
lists with the smallest number of tasks (ie., shortest queue). Again, a predefined
colour-coding of worklists might be used to warn the owner of such candidate
worklists of possible future allocation of tasks.

Pull Patterns : This pattern considers the issue of allocation and offering
from the worker’s point of view (refer to Transitions R:allocate_s, R_allocate_m,
R_start_s, R_start_m in Fig. 8. When a worker is “pulling” a task, s/he may
intend to start the task immediately. However, it is possible that s/he may
only intend to signal the intention to execute the task at some point, but not
immediately. In the second case, the task is pulled by the worker and allocated
to (ie., bound to) the specific worker. It will not be allocated to another resource.
Visualisation and worklist interactions: The worklist should provide the worker
with a way of clearly marking/tagging tasks that s/he intend to do, but not im-
mediately. These tasks will remain allocated in the worklist and cannot be offered

to others. Hence, it will also be useful to indicate deadlines for each “pulled-for-
later” tasks.

Detour Patterns : In real world scenarios, work allocations may have to be
reconsidered due to interruptions by the workflow system, or to the changing
states of the workers. Detour patterns describe nine such cases; the following is
a direct quote from [17], describing each case:

— Delegation - where a worker allocates a work item previously allocated to it,
to another worker;

— Fscalation - where the workflow system attempts to progress a work item
that has stalled by offering or allocating it to another worker;

— De-allocation - where the system makes a previously allocated or started
work item available for offer and subsequent allocation;

— Reallocation - where a worker allocates a work item that it has started to
another;

— Resource suspension/resumption - where a worker temporarily suspends ex-
ecution of a work item or recommences execution of a previously suspended
work item;

— Skipping - where a worker elects to skip the execution of a work item allocated
to it

— Redo - where a worker repeats execution of a work item completed earlier;

— Pre-do - where a worker executes a work item that is ahead of the current
execution point of a workflow case.

Visualisation and worklist interactions: It is quite obvious from the above
that understanding and implementing detour patterns is crucial to providing
a worklist with flexibility. For example, before going on leave, a worker must
be able to re-allocate his/her tasks to other resources so that the workflow can
continue. Appropriate visualisation techniques can assist workers to plan and
organise detour activities. For example, a task has been stalled for a certain
period of time, the visualisation can highlight such tasks for the worker. Once
such a task is brought to the attention of the worker, s/he may choose to escalate
it or complete it herself/himself. Another useful technique will be to highlight,
for example, tasks that can wait or those that have to be re-allocated for a
given period of time. This will help a potential holiday leaver to plan whether
to re-allocate tasks or simply to suspend them for a while.

3.3 A generic approach to managing a worklist

Based on what we discussed so far, we introduce a generalised algorithm that
workers may use to manage their tasks. Inherent in the work allocation process
by the workflow system is the choice by the system of whom to give the task,
via the offer actions.

The workflow system will have a resource view that evaluates the capabilities
of the intended recipient of the task. The worker upon receiving the task, must

make a decision about accepting or not accepting the task. This process is out
of the control of the workflow system, as it only can push tasks to the worker to
request acceptance. The workers’ responses have been characterised by detour
processes. A worker may delegate, de-allocate (reject, in other words), re-allocate
and suspend /resume.

The question for the worker is the choice of adding or rejecting (ie., detour-
ing) a task from his/her worklist and such a choice could be based on push
or pull pattern approaches. Assuming a more pull oriented model of worklist
task selection, providing resource information relevant to a worklist will aid the
worker in this worklist management task, as they are able to decide which item
to choose based upon critical resource issues.

The workflow system may offer a number or only one instance of the task
to the worker, and at this point the worker may decide to perform the task
by checking them out and adding them to a list of active tasks, or the user
may decide to return the task to the unallocated pool via the detour process.
Furthermore, the worker upon completion of the task checks the task in, thus
removing it from the active checked out worklist. This task acceptance process
may be represented by the following formula for the acceptance process, them
being the check out processes respectively:

W, =W, U{l} <= Cw,r>Cipr (1)
where:

— W, is the set of worklist items for worker(s) r;

— I is the new worklist item to be added;

— Cyy is the capability for the task(s) x of type y;

— T is the type of resource being processed (eg. Computer Equipment).

So, at any stage a worker will make a decision about whether to add a worklist
item to their set of worklist items, by looking at the capabilities of the worker for
the present worklist as compared to the requirements of the new task. This can
be automated, but in order to promote healthy workforce relations, the worker
must be allowed to make such decisions as well. It must also be recognised that
people will simply decide not to do a task, if they do not want to or decide to
prioritise using undefined criteria. Furthermore, these visualisations may give
information to the worker regarding the reasoning behind the choice of been
allocated the task, and so the worker is left in an informed state about the
reasons for work allocation.

4 Resource perspective in Workflow

In this section, we discuss a resource perspective on workflow. [18] argues that
an effective workflow model would consider all of the following perspectives:

— Functional perspective: the activities being performed

— Behavioural perspective: when, how and in what order activities are begin
performed

— Organisational perspective: the organisational context in which the activities
are being performed (ie., where and by whom in the organisation).

— Information perspective: the information and data associated with the ac-
tivities.

In general, a resource is referred to as the entity that actually performs an
activity /task. Such entity can be a human or non-human (eg., a computer pro-
gram). In our paper, we take a broader view of the term and we consider resources
to be the workers as well as any work environment element or context that may
be required/considered when workers make decisions in managing their tasks.
Therefore, in the context of our work, introducing a resource perspective into
workflow is an attempt to create an integrated view of organisational perspec-
tive which deals with human resources, and information perspective which deals
with non-human, work environment element or context that may be relevant to
the tasks.

It is important for a workflow system to be aware of the characteristics of
each resource (eg., availability, utilisation, cost, etc.) so that it can make smart
decisions when allocating tasks. Also, it can be argued that it is necessary to
highlight resource related information to the workers so that they can make
smart decisions when managing their worklists.

Most commercial workflow systems are quite mature in their support for
other perspectives (in the form of control-flow and data-flow), but hold a very
simplistic view of the resource perspective [19]. Presently, the only definitive
representation of resources and their relationship to workflow has been for hu-
man resources [17]. Non-human resources, while being noted in their importance,
have not been extensively modelled in workflow systems. As in Fig. 7, [17] sim-
ply describes non-human resources as a tuple; (ResourceType, Description,
Capability).

An enterprise resource ontology has been developed which seeks to generically
model the resources in an organisation [20]. It was developed from a manufac-
turing viewpoint, but easily transfers to aspects of workflow management, as the
resources are generically defined to allow application to other domains.

However, the resources to be considered by the workers for managing work-
lists may differ depending on the nature of the tasks, the skill level of the workers,
or the kind of roles the workers play in an organisation. Indeed, we believe that a
thorough study into the requirements of the workers in making decisions as well
as a survey of effective visualisation techniques have not been explored. This is
an important part of our current on-going investigations, in which we look at
identifying various types of resources that a worklist can provide to help the
workers carry out the tasks.

In the following, we discuss a few generic resource types that we identified as
relevant to our project goal. The list is by no means complete, but we believe it is
generic enough that their visualisations could be implemented in many workflow
systems.

Table 1. Generic types of resources

Resources

Description and examples

Space

Size or dimensional information relevant to the tasks. It may be a dia-
gram showing available storage rooms and their sizes, or meeting rooms
and their capacities. This type of resource may be used to determine,
for example, where 20 computers should be stored. It is separate from
location, as sometimes the visualisation may not relate space with ac-
tual location of the space — space to store computers, but not interested
in where.

Materials

Materials or consumable information relevant to the tasks. It may be
an inventory list of materials to be used in the task, and whether you
have enough of those things: number, volumes, weights, etc. Some of]
these measures will be discrete and others will be continuous.

Equipment

Equipment information relevant to the tasks. It may be, for example,
an inventory of barcode scanners required for the worklist item.

Services

Internal or external services information. It may be a list of travel
booking agencies, printing services, or messaging services and their con-
tacts/availabilities.

Time

Any “time” information relevant to tasks. It could be deadlines (eg.,
the time each task should be completed by), opening hours (eg., the
time a particular service, for example a printing centre, is available) or
a calendar showing working days. This type of resource will be useful
in the planning of task execution sequences.

Location

Geographical “location” information relevant to tasks. It could be a
map of a campus showing locations of university facilities, a floor plan
of an office block, or a diagram showing relative distances between
locations. This type of resource also can be used in scheduling of tasks.
We separate this resource from space as our model uses location in both
the sense of a resource (maps), and as a generic place holder for the
work item location in the visualisation (grid layout).

People

Information about people and their roles in an organisation. It could
be an organisational chart showing roles and responsibilities of people.
This type of resource may be used in finding the right person to seek
for specific help or to delegate a task.

Active Worklist

Current (active) tasks that are being carried out by the worker. This
type of resource will help the worker determine the desirable workload,
and effectively manage the current/future tasks. This resource is spe-
cific to workflow research, as the number of active work items allowed
is idiosyncratic to the worker involved, and may be influenced by man-
agement or worker originating factors.

4.1 Generic Resource Types

‘We tabulate in

Table 1 list of general resources, with illustrative examples. Most

resources we described in Tab. 1 can be represented in the generic non-human
resource model described in [17], or the enterprise resource model proposed in
[20]. For example, equipment, services, location or materials can have their name,

description and capability (eg., print speed for printer) recorded against them
in the workflow database, which can be queried. Some resources can be derived
from information available within the workflow system. For example, data about
people come from staff/organisational information in the workflow administration
data. A active worklist can be obtained from querying the workflow engine to
list unfinished tasks. Also, deadlines (an instance of time) are available from the
workflow engine as they can be assigned to each task when a workflow process
is instantiated.

For these resources to be effectively visualised for a worklist, an association
between a resource (eg., locations of meeting rooms) and a task (eg., Staff meet-
ing at Room K17 401) needs to be made. In our implementation, this link is
manually created by the workflow process designer through the Worklist Visu-
alisation Editor (see Fig. 15). Currently, we do not store resource data in the
workflow system for visualisation purposes. Instead, the designer would provide
external resources (eg., an image of a floor plan, an XML data file of people
or GPS coordinates, etc.) which will then be imported into the visual worklist
handler to create mappings between the tasks and the resource.

4.2 Generic Resource Queries

The visualisations in the worklist can be seen as results of queries of the resources
associated with the tasks being examined. This is a complex requirement, that
can be structured as a series of competency queries [20] on the resources within
an enterprise>.

We formalised this previously in Equation 1, to illustrate the fundamental
process involved in making work task choices. The following lists the queries
performed by the capability assessment function C, ,:

— Quantity — how much of the resource exists at time t;

— Consumption — how much is to be consumed by the worklist item;

— Divisibility — can the resources be divided up to service the work list items;
— Structure — does the structure of the resource fit the worklist item;
Capacity — can the resource be shared with other work list items;

Location — where is the resource;

Commitment — is the resource available at time t;

Trend — capability trend of resource.

In the enterprise resource ontology, the above capabilities are defined with
appropriate relationships to allow queries of the enterprise model. These query
results can be mapped to different worklist visualisations, allowing the workers to
assess the availability of resources to meet a task. The above queries are applied
to the generic resources in Table 1 to yield a capacity value for those resources
with regards to accepting the task.

3 For the sake of congruence with other workflow resource research we replace the
word competency with capability to mean the ability of the resource to perform work

5 Mapping Resources to a Worklist Visualisation

Domain specific issues have a major role in determining the type of queries for
mapping the task to visualisation, but general mappings can also be inferred from
generalisations of the tasks to be performed by the user of the visualisation.

In this section, we describe our generic visualisation construction framework
for worklist visualisation based on the resources we presented earlier. To illus-
trate our concept, we use the following simple workflow as running examples
throughout the paper?.

5.1 Example scenario

The workflow describes a stocktaking process given to an asset management of-
ficer who has to record all computer assets managed by a company. Figure 9
describes that, after stocktaking is announced, the officer has to plan and sched-
ule field trips to various sites to physically locate an asset and record the asset
number using a barcode scanner. This process will continue until all the sites
have been visited.

For the asset management officer to be able to carry out each task, some
context information may be required. For example, s/he may want to know how
far rooms are located from each other, how many assets are to be collected at
each location, etc. to schedule the field trips efficiently.

5.2 Backgrounds and Overlays

For illustration purposes, we choose the four resources; time, location, people
and active worklist. The visualisation framework is based on a layered approach,
in which background and overlay planes are used. A 2D representation of any
of the resources forms the background layer. Thus the background plane allows
the comparison of resource values for each of the active worklist items being
presented. For example:

— The location resource uses a coordinate representation that shows where-
abouts and distance between locations (eg., Street maps);

— The people resource uses a chart or social network form of representation
(eg., organisational charts);

— The time resource uses a constrained time line form of representation (eg.,
Gantt chart).

The overlay plane consists of the tasks in the worklist being viewed by the
worker. Each task is given (x, y) coordinates in relation to the background,
which is the resource information allocated to the task. We name the resource
that is allocated to the background layer, the Principal Resource (PR). The
final (x, y) coordinates for the work item are then a mapping of the input

4 The reader should note that the example is simplified for illustration purposes.

Stocktaking Location Asset code
announced found scanned
Schedule visits Scan the Check whether all
to the locations room code locations visited
Schedule is Room code @
prepared scanned
\]/ More locations Al scheduled locations
Update/test Scan the to be visited visited
asset code
the barcode scanner \L
¢ Upload scanner data
The scanner into FITSIS
is ready ¢
Data
XOR uploaded

Legend

Visit the location
<:> Event |:| Function Exclusive OR

Fig. 9. Event-Process-Chain diagram of the stocktaking process.

components of the PR vector to two dimensions in normalised device coordinates,
formalised as a general mapping function here:

f:R" = R*:r,— w, (2)
where:

— w, is the 2D work item normalised window coordinate x = [0.0,1.0] and
y = [0.0,1.0];
— 1p is a vector of information defining the PR for the visualisation.

We group these mappings into three functional types:

— Coordinate mappings are an arbitrary mapping of specified locations with
x,y coordinates mapped to the visualisation device, for example, GPS coor-
dinates, that have no constrains with respect to each other (refer to Fig. 10).
Each object may overlap other objects in the visualisation.

— Regional mappings use an ID to lookup the region they are constrained to
in the visualisation, for example, organisational unit name. However, the
regions themselves may or may not be constrained relative to each other
(refer to Fig. 11), and may overlap each other.

— Grid mappings generate visualisation coordinates from enforced discrete
rows and columns assigned to a worklist item, for example, the commence-
ment time of a task (refer to Fig. 12). This represents a coordinate system
separate to the final visualisation device coordinates. The grid is the default

mapping of work item tasks, due to the fact that a simple list of work items
is a form of column-based grid visualisation. The objects do not overlap each
other, being constrained to grid cells.

It should be noted that each of these visualisations requires fine tuning for an
implementation, via computer graphics implementations. The graphics library
is responsible for mapping the normalised device coordinates w. to pixel coor-
dinates in the viewing window of the application [21]. Therefore, the mappings
presented in this document represent a general form of the visualisation work
item coordinate generation process.

All of the worklist items on a case appear on every view. If the system selec-
tively placed worklist items on a view, then the worker may miss items, or get
confused by the changes from view to view. In addition, the item may require
assessment from a number of resource viewpoints before being accepted or re-
jected by the worker. Therefore, we ensure that the entire worklist is shown on
each view. The workers can easily switch from one view to another via tabbed
windows.

The framework is generic in that any types of resources can be presented
using the overlaying technique. The same worklist can be viewed from different
resource perspectives. Furthermore, the background and foreground can contain
iconic representations of an arbitrary nature, to represent the worklist items
using appropriate images that match domain specific metaphors, for example, a
PC icon can represent a computer to be collected [22].

Each is a representation that can be used within a workflow system to decide
about task choices, with regards to the relevant resources. They can be turned
on and off by the designer of the workflow visualisation to allow or deny access to
extra information regarding tasks. Each one can be modified to suit a particular
application area, thus leaving room for development of novel visualisations tailor-
made for different applications. Included are example mapping functions for the
PR, to show formally how it is transformed into (x,y) visualisation locations.

5.3 Resource Mapping Examples

Let us return now to consider the stock take example scenario. For illustrative
purposes, we have chosen a subset of the tasks in the case study. The example
worklist contains the following three tasks (ie., work items).

1. Collect scanner from S Block;
2. Scan items in O Block;
3. Scan items in A Block.

We present a visualisation example for three resources we have chosen in the
resource model: location, people and time, and apply them to the listed tasks in
the stocktake case study.

Ezample 1. Location Resource (Figure 10)

Work Item PR Vector PR (x,Y)
(°,”) Real Valued
Scan Object 27°28°37.76” S 02.,0.8
A Block 153°01° 42.21” E ~
A S
Scan Object 27°28°33.38” S 0.6,0.3 =
O Block 153°01° 41.18” E §
Collect 27°28° 38.78” S 0.3,0.18
Scanner 153°01°38.13” E
0.0
0.0 X Values 1.0

Fig. 10. Example Location Resource visualisation for the computer stock take example,
mapping longitude and latitude values via a scale and translate to normalised window
coordinates, overlaid onto a map of the QUT campus. A table of values is shown on
the left, with the mapped locations on the right hand side as an example visualisation.

Task: compare the spatial locations of tasks to be performed for logistical pur-
poses.

Visualisation: map detailing the arrangements of tasks in space, to aid the
worker in identifying efficient ordering of the work.

Mapping Function: A variation of the coordinate mapping, wq. = M X rp,
where 7, consists of location resources information in specified units (eg. latitude
and longitude) mapped to x,,, Y., values in pixels on visualisation device window,
where M is the window transform (scale and translate) from world coordinates
to device coordinates.

Ezample 2. People Resource (Figure 11)

Task: assess the capabilities of the people available for task.

Visualisation: overlays of people available to meet task with encoding of match
between people and the tasks colours/textures, including hierarchical views, so-
cial network views. In this example, the work items are mapped to a hierarchy
list, to show which bureaucratic section the example is executed in, in order to
see who needs to be contacted for task execution purposes.

Mapping Function: A form of the region mapping, wg. = LUT (wsec), where
LUT is a window coordinate lookup table function indexed by the id tag wse.
for the social group in which the worklist item belongs.

Ezample 3. Time Resource (Figure 12)

Task: compare the relative start and finish times for each task and insert it into
the worklist at appropriate moments if time resources are available, either by
leaving the task as whole, or dividing it into smaller components for insertion
into small time gaps.

1.0
QUT University
Work PR Vector LUT PR Services
Item (Social ID) xy)
String | |
S{can Printing 02,01 Library Services Faculty Services
Object A Services <
Block <
o
Scan Student Centre 0.5,0.1 | =
Object O p 2
Block Printing Stident Centre IT Support
Collect IT Support | 0.8,0.1 it ARlock Svces
Scanner Services - - g_ \/
0.0
0.0 X Values 1.0

Fig. 11. Example People resource visualisation as a QUT section hierarchy, showing
the region mapping from hierarchy ID to visualisation position via a lookup table. A
table of values is shown on the left, with the mapped locations on the right hand side
as an example visualisation.

Visualisation: Gantt Chart showing all available tasks on a time line in stacked
manner to identify insertion points for the worklist items.

Mapping Function: A fixed grid mapping, wg. = f(w;q,t), where w;q is the
work item identification number, ¢ is the time and wy. the final visualisation
window device coordinates.

6 Interacting with the visualised worklist

In the visualised worklist, each task is represented by a coloured icon. Some
workflow systems support the generation of a number of instances of tasks,
that may be disseminated to workers [23]. Thus an aggregated icon has to be
used to represent multiple instances of the task in question. Figure 13 shows
an example of a task with multiple instances. An aggregated icon is shown with
four icons with numeric information regarding the number of instances and their
status within the system. The state of any delivered task at one time may be
the following: inactive, available, checked out and suspended, and included is
the colour we have mapped to the state using the traffic light metaphor of red,
green and amber:

— Inactive: unavailable to the worker (grey);

— Available: available to the worker to check out (amber);

Checked Out: has been checked out by the worker (green);

Checked In: has been checked in and completed by the worker (red);

— Suspended: has been checked out by the worker, is still incomplete, but
checked in to the user (amber dashed).

PR Vector
(Work Item #, AP @ Scan Object
Time) Discrete | O Block
Collect ! Collect Scanner
Scanner -7 S -G.,} <
5
Scan 2,11 0.6,0.7 i Soan Object =
Object O R A block 2
Block |
Scan 3,11 0.6,0.6 e H [@
Object A -l -4-77
Block >
0.0
0.0 X Values 1.0

Fig. 12. Example time resource visualisation for the stock take example. Each PR is
a tuple of work item ID and time in hours. A table of values is shown on the left, with
the mapped locations on the right hand side as an example visualisation. Depending on
the intended workflow application, the other resources: Space, Materials, Equipment,
Services and Active Worklist, can be visualised using a similar mapping process as the
principal resource on the overlay plane. We now define an interaction framework for
the previously mapped resource visualisations.

Red
Green

Amber

Grey

Prepare Stock Check Report

Fig. 13. Illustration of an aggregated icon made up of single task icons. The example
shows a task titled ”Prepare Stock Check Report” with zero checked in, one checked
out, three available and one task unavailable. The colour of each segment is annotated
beside the icon for clarity.

We use the traffic light metaphor due to its intuitive mapping to the sta-
tus of the tasks: green active (go), red completed (stop) and amber available
(in between go and stop). Furthermore, the available state is refined to have a
dashed amber appearance for those items that are suspended, and so the dashed
appearance represents a partially completed task.

After executing the visual worklist handler, and linking with a work flow
server, the user interacts with the work item icons, by clicking on the icons
to check out available tasks, and by clicking on checked out icons to check in
completed tasks. Whenever appropriate, a form will be presented by the work-
flow system, to obtain data from the worker. The visual worklist handler user
interactions are listed in Tab. 2.

Table 2. List of worklist visualisation handler user interactions

User Interaction Description
The user right clicks on an Amber icon component within a vi-
Check Out sualisation, and chooses an instance of the work item in order to

take responsibility for the task.

The user right clicks on the Green icon component and chooses
Check In an instance of the work item to check in, to notify the workflow
system of the completion of the task.

To change visualisation type, the user clicks on the window tab
listing the desired visualisation.

Change View

7 Implementation

A major test of any workflow visualisation approach is its ability to be incor-
porated into a modern client server-based workflow system. We have built a
prototype of the proposed visualisation framework, and interfaced it with the
workflow system YAWL. This section discusses the system architecture and im-
plementation in detail.

7.1 The YAWL Environment

Our implementation is based on the open source workflow environment named
YAWL (Yet Another Workflow Language), which is a research initiative at
Queensland University of Technology [23]. YAWL is based on a set of work-
flow patterns developed via analysis and comparison of a number of commercial
workflow systems. It provides a powerful and formal workflow description lan-
guage, as well as an execution environment.

To understand the architecture of our visualisation framework, we first present
the overall architecture of YAWL. Workflow specifications are created in the
YAWL designer which is a graphical editor, and deployed to the YAWL engine.
The engine performs verification of the specifications and stores them in the
YAWL repository. The specification can be loaded and launched for execution
via the YAWL manager, and is hereafter referred to as a schema. The execution
itself is managed by the YAWL engine. The YAWL engine interacts with the
components labelled as YAWL services through Interface B. The YAWL ser-
vices (worklist handler, web services broker, interoperability broker and custom
YAWL services) are based on the web services paradigm and all are abstracted
as services in YAWL.

How the engine communicates with the YAWL worklist handler is of particu-
lar interest in our work. The worklist handler is the component that is responsible
for dispatching tasks to the workers. Through the worklist handler, the workers
accept tasks and mark their completions. In conventional workflow systems, the
worklist handler is part of the workflow engine. However, in the YAWL environ-
ment it is a separate component that interacts with the engine through Interface

B. Through the interface, a custom service or application can be developed to
extract worklist information for display in whatever manner is required.

a1
g
‘ N YAWL YA\jVL
repository < engine
workflow
specifications
visualisation
specifications
YAWL YAWL
Visual > 44— visualisation
worklist handler designer

:

visualisation visualisation
applets applets

Fig.14. YAWL Visualisation Framework: Overall architecture

7.2 Worklist Visualisation Architecture

Based on the existing YAWL architecture, we have developed a new type of
YAWL worklist handler which interacts with the engine through Interface B. The
overview architecture is shown in Fig. 14. It has capabilities to (i) display the
visualised resources and (ii) dispatch tasks like a normal worklist handler. The
architecture consists of two components which have been designed and partially
implemented: a visual worklist handler and a visualisation designer.

The visual worklist handler can view multiple cases of running workflows,
with multiple resource-centric views matched to the requirements devised by
the YAWL schema designer. The worker loads the cases and is presented with a
list of tasks, and a tabbed view list to switch between difference representations
of the worklists. In the following two sections we describe the two components,
and illustrate them with developed examples.

7.3 YAWL Visualisation Designer

The designer application is the most complete at this stage. It is designed around
the structure of the visualisation approach we have developed, and is imple-
mented in Java, as is the rest of the YAWL implementation. The visualisation
designer allows the user to load Scalable Vector Graphics (SVG) files as back-
grounds and icons for the overlay planes. This allows easy modification of images
via other drawing tools. The SVG component of the designer is managed by the

Batik Java package [24]. The designer application is an implementation of the
work item coordinate scheme we detailed earlier. This designer allows the easy
outlaying of tasks as icons across the background in the program. The process
of designing a visualisation view for a schema is as follows:

First decide on the background and overlay images, editing them in a separate
tool and saving them as SVG files. Decide on the spatial arrangement of the tasks
to be displayed according to the resources that need to be analysed, for example
a map for logistics on QUT campus that will help a worker to decide where
to perform their tasks. Until there is an adequate implementation of a resource
model in YAWL, the icons are located by hand for the purposes of proof of
concept. Load the workflow schema into the editor to obtain the tasks in the
system, which appear in a mouse menu on a right click at the chosen location on
the background (refer to Fig. 15). Load the background image. Set the current
icon to be used by choosing from the list in a dialog (refer to Fig. 15). Move
pointer to the location of the worklist item and right click to choose a task, and
icon, repeating for all worklist items.

£ YAWL Visualization Editor

File View

Icon Height: @mmh@’jggmmm

o
]
: .

Q 6. SWJuns_mJJlnnk
2_Scan_ltems_in_Y_Block

5 ScllJtIml_i_O_Mﬂck

4_Upload_Scanned_Data

CollectScanner

g Jh I b

Fig. 15. Yawl Visualisation Designer: main components. The left window is the list
of active icons, the right window is the main editing window, with the collect scanner
work item being placed on the diagram.

Figure 15 illustrates the major components of the visualisation designer user
interface via the stocktaking example on the campus map. The large window is
the main window for visualisation design, and the smaller window shows a list
of potential icons to be placed at locations on the visualisation. Each view is
placed into a tabbed list, just as they are to be displayed in the visualisation
agent. The menu is displayed using a mouse right click, showing the tasks defined

in the schema. The icon can be placed at the location of the right click of the
mouse, or using actual coordinates in the text entry boxes at the bottom of
the screen. The icon at the bottom left of the image is the current task icon,
“CollectScanner” and is shown using a disk icon.

This visualisation design information is stored in an XML file (see Fig. 16)
that defines an arbitrary number of views per schema, and the task icons, gained
from the number of tasks within the YAWL schema. This file is then read by the
Visual Worklist Handler to form the visualisation structure for communication
to the YAWL engine. The following is a snippet from a visualisation specification.
A specification may have a number of views <view>, and each view may have a
number of tasks <task>. A view is associated with a background representing
a resource. Each task is assigned a color for the description, coordinates, and an
icon.

<specification id = "TSSstockTake.ywl"

uri = "file:/D:/Yawlstuff/batik/demo/TssStockTake.xml">
<view id = "file:/D:/Yawlstuff/batik/demo/map-1/newmap.svg">
<task id = "3_CollectScanner">

<color> -16777216 </color>

<coordX> 240 </coordX>

<coordY> 760 </coordY>

<icon width="75" height="75">
file:/D:/Yawlstuff/demo/floppy.svg

</icon>

</task>

</view>

</specification>

Fig. 16. Example of visualisation specification file

We have implemented the beginnings of a visualisation editor and visualisa-
tion viewer, which we show in this paper. In a final implementation, additional
resource information will be selected from the resource view of the YAWL schema
as it is running. For now we are able to design worklists arranged according to
grid, spatial and time arrangements.

7.4 YAWL Visual Worklist Handler

Worklists are disseminated in YAWL via the default worklist handler as sim-
ple dialogs containing lists of tasks, with no other resource information being
displayed. We have begun implementing a visual worklist handler that is an
extension of the default handler. The YAWL workflow implementation is struc-
tured around a component architecture that communicates via XML formatted
commands. Thus the worklist handler is able to utilise the B interface to the
running YAWL case in the same manner as the default worklist handler. The

visual worklist handler is able to execute the visualisation developed with the
designer that is stored in a file (see Fig. 14). The new worklist handler allows a
more intuitive mapping of task coordinates to the check in and check out process.
The user is able to check items in and out by simply clicking on the potential
worklist item in its location on a map or hierarchy diagram. A running version
of this design is shown in Fig. 17 and Fig. 18.

YAWL Options | Case | View Help

Control Tab || TSSstockTakeywl 2

Launch A Case

Spec ID | Spec Name | Documentation [
TSSstockTake ywl il

Launch Case

View Case State

Cancel Case

Reset

Fig. 17. The administration screen for the visualisation program, showing the stock
take work flow schema being loaded and executed.

With a varied spatial organisations to the tasks, the person doing this stock
take process can evaluate the task, using the map to make a decision about
the acceptance of the worklist item in consideration of the location, time and
potentially other resources.

8 Conclusion and Ongoing Work

We have described the beginnings of a thorough analysis of workflow visualisa-
tion; its theoretical basis, resource centric approach and appropriate visualisa-
tion techniques. Analysis of these sections revealed how to use these techniques
within a typical workflow system. The task coordinate approach was described,
showing how this can be generalised across a number of visualisations using a
background and overlay approach. We have also begun the development of a
visualisation development environment, with an editor and visualisation agent
that uses SVG files and is easily integrated into the YAWL workflow system cre-
ated by the BPM group at QUT. We have therefore shown supporting evidence
that this visualisation approach can be used within a fully featured workflow
environment.

Further analysis will continue to refine the visualisation mappings to produce
a knowledge base for development of visualisations within workflow applications.
In particular, there will be refinement of the broad categories of resources into
more fine grained categories to derive a rule-base for an intelligent design agent
to be incorporated into the visualisation designer. Evaluation experiments will

YAWIL Options Case Help

a) = e
Control Tab || e vg
Available Work
D | Task Description _ staus | EnablementTime
2:5_Scan_lterms_in_O_... |Scan_ltems_in_0O_block |Enabled Aug:27 16:29:29
3:3_Co iner Ci iner Enabled Aug:27 16:24:09
2:2_Scan_ltems_in_Y_B...|Scan_ltems_in_Y_Block |Enabled Aug:27 16:29:29
2:6_Scan_lterns_in_A_B.. Scan_ltems_in_A_Block |Enabled Aug:27 16:29:29
4:3_Co ner C iner |Enabled Augi27 16:24:20
Check Out
Reset

b)

YAWL Options Case Help
Gontrol Tab | newmay

i ===t e [| =1 =] [f=1 [O=0 E] [

Fig. 18. Screen dump of a running visualisation handler, showing a) default simple
work item list, b) campus map visualisation, and c¢) same worklist viewed from the
timeline perspective.

be performed within a case study in order to ascertain the effectiveness of the
resource centric visualisation approach with users of workflow tools.

In addition, we are currently working on generalising the idea of worklist,
which is produced from a workflow engine, to tasklist. Our tasklists can be (i)
automatically populated from the work coming from various resources including
a workflow engine, email correspondence, or calendar events, etc. and (ii) pre-
sented (i.e., visualised) in a coherent way that aids completion of a given task
as well as providing a significant control over all the facet of task visualisation.
The project is inspired by the fact that the data and knowledge we consume
for everyday tasks are more and more distributed (e.g., Internet, Intranet, email
clients, mobile devices, calendar clients), improving productivity in workplace
means improving the way people manage such knowledge. We plan to, first, ex-
ploit the latest resource view developments that are being implemented within
YAWL, to enable the run time specification of resources and data associated
with a task.

Acknowledgement

This project is partially supported by a QUT Faculty of Information Technol-
ogy collaborative grant. We acknowledge the programming assistance provided
by Tore Fjellheim and Guy Redding, who programmed the visualisation editor

and agent applets and integrated them into the YAWL workflow system. Their
dedication and hard work towards implementing this project have been greatly
appreciated.

References

1.
2.

®

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Keller, P., Keller, M.: Visual Cues. IEEE Press., Piscataway USA (1993)

Tufte, E.: The Visual Display of Quantitative Information. Graphics Press,
Cheshire, USA (1983)

Luttighuis, P., Lankhorst, M., Wetering, R.v.d., Bal, R., Berg, H.v.: Visualising
Business Processes. Computer Languages (2001) pp.39-59

Bobrik, R., Reichert, M., Bauer, T.: View-based process visualisation. In: Proc.
of the 5th International Conference on Business Process Management, Brisbane,
Australia (2007) pp.88-95

Streit, A., Pham, B., Brown, R.: Visualization support for managing large business
process specifications. In: Proc. of the 3rd International Conference on Business
Process Management, Nancy, France (2005) pp.205-219

UNISYS: 3D Visible Enterprise (2004) www.3dvisibleenterprise.com/3dv/.
Schonhage, B., van Ballegooij, A., Elliens, A.: 3D gadgets for business process
visualization:a case study. In: Symposium on Virtual Reality Modeling Language,
Monterey, California, ACM Press (2000) pp.131-138

Systems, 1.S.: Interactive Software (2004) www.interactive-software.de/.

Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with
bp-ql. In: Proceedings of the 31st international conference on Very large data
bases, VLDB Endowment (2005) 1255-1258

Freire, J., Silva, C.: Towards enabling social analysis of scientific data. In: Social
Data Analysis Workshop (in conjunction with CHI 2008). (2008) to appear.
Jones, W., Bruce, H.: A report on the nsf-sponsored workshop on personal infor-
mation management (2005) http://pim.ischool.washington.edu/.

Karger, D., Bakshi, K., Huynh, D.,; Quan, D., Sinha, V.: Haystack: A general
purpose information management tool for end users of semistructured data. (2005)
13-26

Dittrich, J., Salles, M.V.: idm: A unified and versatile data model for personal
dataspace management. In: VLDB. (2006) 367378

Latva-Koivisto, A.: User interface design for business process modelling and visu-
alisation. Technical report, Department of Computer Science, Helsinki University
of Technology, Helsinki (2001) Masters Thesis.

Leroux, H., Exton, C.: COOPE: a tool for representing concurrent object-oriented
program execution through visualisation. In: Proc. of 9th Euromicro Workshop
Parallel and Distributed Processing. (2001) pp.71-76

Jennings, N., Norman, T., Faratin, P.. ADEPT: An Agent-based Approach to
Business Process Management. ACM SIGMOD Record 27 (1998) pp.32-29
Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
Resource Patterns: Identification, Representation and Tool Support. In: Proc. of
CAISE, Porto, Portugal, Springer Verlag (2005) (to appear).

Curtis, B., Kelner, M., Over, J.: Process modelling. Communication of the ACM
35 (1992) pp.75-90

Heijens, S.: Support for workflow administration and monitoring in the yawl
environment. Master’s thesis, Vrije Universiteit Amsterdam (August 2005)
http://www.yawl.fit.qut.edu.au/yawldocs/.

20.

21.

22.

23.

24.

Fadel, F.G.: A Resource Ontology for Enterprise Modelling. Technical report,
Enterprise Integration Laboratory, Toronto (1994) M.A.Sc.

Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL(R), Programming Guide:
The Official Guide to Learning OpenGL(R), 5th Ed. Addison-Wesley Professional,
New York USA (2005)

Schneiderman, B.: Designing the User Interface 3rd Ed. Addison-Wesley, Reading,
USA (1997)

Aalst, W.M.P.v.d., Hofstede, A.H.M.t.: YAWL: Yet another workflow language.
Information Systems 30 (2005) pp.245-275

Batik: Batik SVG Toolkit (2005) http://xml.apache.org/batik.

