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Abstract. Reset/inhibitor nets are Petri nets extended with reset arcs and in-
hibitor arcs. A reset arc allows a transition to remove all tokens from a certain
place when the transition fires. An inhibitor arc can stop a transition from being
enabled if the place contains one or more tokens. While reset/inhibitor nets in-
crease the expressive power of Petri nets, they also result in increased complexity
of analysis techniques. One way of speeding up Petri net analysis is to apply re-
duction rules. Unfortunately, many of the rules defined for classical Petri nets do
not hold in the presence of reset and/or inhibitor arcs. Moreover, new rules can
be added. This is the first paper systematically presenting a comprehensive set
of reduction rules for reset/inhibitor nets. These rules are liveness and bounded-
ness preserving and are able to dramatically reduce models and their state spaces.
Note that most of the modelling languages used in practice have features related
to cancellation and blocking. Therefore, this work is highly relevant for all kinds
of application areas where analysis is currently intractable.
Keywords: Reduction rules, Petri nets, reset arcs, inhibitor arcs, liveness, bound-
edness.

1 Introduction

Petri nets are a well-established formalism for modeling and analysing concurrent sys-
tems. Over time many extensions have been proposed in order to capture specific, pos-
sibly quite complex, behaviour in a more direct manner. These extensions include reset
arcs and inhibitor arcs. Reset arcs provide a natural means of dealing with cancellation
behaviour. For example, a customer may cancel a travel request which would result in
certain activities terminating. Areset arcis a type of arc that goes from a place to a
transition and its semantics is to remove all tokens from that place when the transition
fires [5, 7, 8, 10, 11]. Inhibitor arcs provide a natural means of dealing with blocking be-
haviour. For example, an invoice should only be generated when the items ordered are
ready for delivery and the order has not been cancelled. Aninhibitor arc is a type of arc
that goes from a place to a transition and its semantics is to prevent the transition from
firing when the place contains one or more tokens [12, 14].

While these extensions increase the expressiveness of Petri nets, they can compro-
mise analysis techniques and certain properties may even become undecidable. Exam-
ples of such properties are the reachability problem, which is undecidable for Petri nets



with two inhibitor arcs and for Petri nets with reset arcs, and place invariants, which do
not hold for Petri nets with reset arcs. Examples of such analysis techniques are reach-
ability and coverability analysis, which can be used to detect structural and behavioural
properties of Petri nets [13]. Coverability analysis has been extended in order to deal
with Petri nets with reset arcs [10] and also in order to deal with Petri nets with inhibitor
arcs [3]. Limiting the practical applicability of reachability and coverability analysis is
the problem ofstate explosion, which occurs in nets where a very large number of
markings need to be considered.

Reduction rules for Petri nets have been proposed to deal with the state explosion
problem. Reduction rules can reduce the size of the net while preserving certain essen-
tial properties such as liveness. Their application therefore has the potential to signifi-
cantly speed up the analysis process. A significant body of research exists that addresses
the concept of reduction in the area of Petri nets (see e.g. [2, 13]) and its various sub-
classes (see e.g. [6]) and extensions (see e.g. [17]). However, as far as we know, the
issue of reduction in Petri nets with both reset and inhibitor arcs has not been consid-
ered in the literature. Existing reduction rules are not directly applicable in the presence
of both types of arcs.

Business process modeling languages used in practice, e.g. UML Activity Dia-
grams, the Business Process Modelling Notation (BPMN) and the Business Process Ex-
ecution Language (BPEL), offer features which correspond to cancellation and block-
ing. In capturing their semantics, reset arcs and inhibitors arcs have a natural place.
Hence the analysis of business process modeling languages mapped to Petri nets with
reset and inhibitor arcs could benefit from reduction rules developed for such nets. Here
it can be added that the application of general translations of modeling notations to Petri
nets typically results in nets with many “dummy” transitions that are used to glue vari-
ous parts of the model together. Reduction rules can then be quite effective in reducing
the resulting nets.

In this paper a number of reduction rules for Petri nets with reset and inhibitor arcs
are proposed. These are inspired by reduction rules provided for Petri nets in [2, 13] and
for Free Choice Petri nets provided in [6]. Additional conditions are proposed to cater
for the presence of reset and inhibitor arcs. The proposed rules are shown to preserve
liveness and boundedness.

The contributions of the paper are as follows. (1) The paper aims to make a contribu-
tion to the body of theory in Petri nets with reset and inhibitor arcs by providing a set of
liveness and boundedness preserving reduction rules. (2) In practical terms, the reduc-
tion rules presented in this paper can be used for an efficient analysis of business pro-
cess models described using various business process modelling languages that support
cancellation and blocking such as the Business Process Modelling Notation (BPMN),
the Business Process Execution Langauge (BPEL) and the Unified Modelling Language
(UML). The organisation of the remainder of this paper is as follows. Section 2 provides
terminology, concepts, notations and formal definitions that are required in subsequent
sections of the paper. In section 3 a set of liveness and boundedness preserving reduc-
tion rules for Petri nets with reset and inhibitor arcs are introduced. Section 4 discusses
related work and section 5 concludes the paper.
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2 Preliminaries

This section provides the formal foundation for Petri nets and reset/inhibitor nets as it
is used throughout this paper. Readers familiar with Petri nets, reset arcs, and inhibitor
arcs, may very well skip this section, although the particular notations used in the paper
might still be of interest to them.

2.1 Petri nets

In its basic form, a Petri net consists of a set of places, a set of transitions, and a set
of arcs that connect places to transitions and vice versa. Note that arcs do not connect
places to places or transitions to transitions. For sake of simplicity, we assume that a
Petri net contains at least one place.

Definition 1 (Petri net [13]). A Petri net is a tuple (P, T, F ) whereP is a (non-empty
finite) set of places,T is a set of transitions,P ∩ T = ∅ andF ⊆ (P × T ) ∪ (T × P )
is the set of arcs.

Let N be a Petri net(P, T, F ), and letx be a node ofN , that is, letx ∈ P ∪ T .
We use•x andx• to denote the set of input nodes and output nodes respectively. If the
net involved cannot be understood from the context, we explicitly include netN in the
notation and we writeN• x andx

N• . RelationF implies a function andF (x, y) evaluates
to 1 if (x, y) ∈ F and to 0 otherwise.

To every place of a Petri netN = (P, T, F ) a (non-negative) counter can be associ-
ated. The actual values of all these counters of all places of the net is called amarking
of that net, and corresponds to a state of the net. LetIM(N) denote the set of all possible
markings of a netN , and letM ∈ IM(N) be a marking of netN . ThenM ∈ (P → IN),
andM can also be interpreted as a vector, function, or multiset over the set of places
P . Typically, a markingM ∈ IM(N) is visualized by puttingM(p) tokens(black dots)
into every placep. Thus, the number of tokens in a place corresponds to the actual value
of its counter.

A markingM contains another markingM ′, denotedM ≥ M ′, iff the counters of
M are at least the counters ofM ′, that is, for everyp ∈ P : M(p) ≥ M ′(p). Likewise,
a markingM exceeds a markingM ′, denotedM > M ′, iff M ≥ M ′ andM 6= M ′.
MarkingsM andM ′ can be added, denotedM + M ′, in a straightforward way (for
everyp ∈ P :(M + M ′)(p) = M(p) + M ′(p)). Furthermore, these markings can be
subtracted, denotedM−M ′, in a straightforward way (for everyp ∈ P : (M−M ′)(p) =
M(p) − M ′(p)), provided that the former marking contains the latter (M ≥ M ′). In
definitions to come, we use the fact that every set of places induces a marking in a
straightforward way (by associating the value1 to every place). As a result, we can add
(subtract) a set of places to (from) a marking, and can compare (contains, exceeds) sets
of places to markings. Finally, we use0 to denote the empty marking, that is,0(p) = 0
for every placep.

Places hold the current state of a Petri net, but transitions may change this current
state byfiring. However, before a transition fires, it should beenabled. A transition is
enabled if all input places have tokens, that is, if all the counters of its input places
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exceed zero. If an enabled transition fires, it removes a token from every input place
and adds a token to every output place, that is, it decreases the counter of its input
places, and increments the counter of its output places. Note that because the transition
is enabled, the counters of its input places will be at least0 after the transition has fired.

Definition 2 (Enabling and firing a transition in a Petri net). LetN = (P, T, F ) be
a Petri net,t ∈ T andM, M ′ ∈ IM(N). Transitiont is enabledat M , denoted asM [t〉,
iff M ≥ •t. If transition t is enabled atM , then it mayfire, which results in a marking
M ′, whereM ′ = M − •t + t•. This, we denote byM

N,t→ M ′.

If there can be no confusion regarding the net, the expression is abbreviated as
M

t→ M ′ and if the transition is not relevant, it is written asM → M ′. We write
M

N,σ→ Mn if σ = t1t2...tn is an occurrence sequence leading fromM to Mn i.e.
M

t1→ M1
t2→ ...

tn→ Mn. The empty occurrence sequence is denotedε.
A Petri netN = (P, T, F ) together with a markingM ∈ IM(P ) is called a marked

Petri net, denoted(N,M). Clearly, a marked Petri net induces a state space, where
every state corresponds to a reachable marking. The set of all reachable markings is
called the reachability set of the marked Petri net(N, M) and is denotedN [M〉. This
reachability set is the minimal set that satisfies the following conditions:

– the initial marking is reachable, that is,M ∈ N [M〉, and
– if a marking is reachable which enables some transition, then the marking that re-

sults from firing this transition is also reachable, that is, ifM ′ ∈ N [M〉 andM ′[t〉
then(M ′ − •t + t•) ∈ N [M〉.
A marked Petri net(N, M) is calledlive iff every transition can get enabled from

every reachable marking. As a result, in a live marked Petri net no transition can get
shut down.

Definition 3 (Liveness [6]).Let (N, M) be a marked Petri net with the initial marking
M . (N,M) is live iff for everyM ′ ∈ N [M〉 and everyt ∈ T there exists aM ′′ ∈
N [M ′〉 such thatM ′′[t〉.

A marked Petri net(N,M) is calledbounded iffevery counter of every place has
a maximal value. As a result, for a bounded marked Petri net, the number of reachable
states is finite.

Definition 4 (Boundedness [6]).Let (N,M) be a marked Petri net with the initial
markingM . (N,M) is boundediff there exists a natural numberb ∈ IN such that for
everyM ′ ∈ N [M〉 andp ∈ P it holds thatM ′(p) ≤ b.

2.2 Reset/Inhibitor nets

A reset net [7] is a Petri net with specialreset arcs, that can clear the tokens in selected
places. Reset arcs are represented as doubled-headed arrows. An inhibitor net [12, 3] is
a Petri net with inhibitor arcs. Inhibitor arcs are used to test for absence of tokens in a
place. A transitiont can only fire if all its inhibitor places are empty. Graphically, an
inhibitor arc connects a place to a transition and the arc ends with an empty circle on
the transition side.
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Definition 5 (reset/inhibitor net). A reset/inhibitor net is a tuple(P, T, F, R, I) where
(P, T, F ) is a Petri net,R : T → IP(P ) provides the reset places for the transitions,
andI : T → IP(P ) provides the inhibitor places for the transitions.

The notationsR(t) and I(t) for a transitiont return the (possibly empty) set of
places that it resets and that inhibit it. We also writeR↼(p) andI↼(p) for a placep,
which returns the set of transitions that can resetp and that are inhibited byp. Further-
more, we introduce a notation to project a markingM onto a set of placesP , denoted
M ¹ P : (M ¹ P )(p) = M(p) if p ∈ P and(M ¹ P )(p) = 0 otherwise.

The notions of inputs, outputs and markings defined for an ordinary Petri net also
apply to reset/inhibitor nets. Clearly, inhibitor arcs affect whether transitions are en-
abled, whereas reset arcs affect the result of firing an enabled transition.

Definition 6 (Enabling and firing a transition in a reset/inhibitor net). Let N =
(P, T, F,R, I) be a reset/inhibitor net,t ∈ T and M,M ′ ∈ IM(N). Transition t is
enabledat M , denoted asM [t〉, iff M ≥ •t and M ¹ I(t) = 0. If a transition is
enabled atM , it mayfire, which results in a markingM ′, whereM ′ = (M − •t) ¹
(P \R(t)) + t•.

Mutatis mutandis, the definitions of liveness and boundedness for marked reset/inhibitor
nets are the same as defined for marked Petri nets.

2.3 An example reset/inhibitor net

Figure 1 shows an example reset/inhibitor net. As usual, circles represent places, squares
represent transitions, and black dots represent tokens. As mentioned before, the arc with
the open dot at the end is an inhibitor arc, whereas the arc with the double-headed arrow
is a reset arc. The dashed area represents a cluster of places that is being reset by the
same set of transitions:ca, sp, mdc, andmd. For sake of readability, we have replaced
all reset arcs from these places to these transitions by one reset area.

The reset/inhibitor net shown in Figure 1 is loosely based on the description of
thevisa application for general skilled migration to Australia, which can be found on
the Internet (see http://www.immi.gov.au). The process starts when a visa application
is received (rva) and ends when the applicant cancel the request (ca), the processing
is stopped due to non-responsiveness of the applicant (sp), or when the application is
finalized in a proper way (fa). In the latter case, the visa can either be granted (gv) or de-
nied (dv), in which case the applicant is notified (na). Typically, after the application has
been received, a case officer opens a file for the applicant (oaf), processes application
fees (paf), and performs an initial assessment (pia). It the application is complete (c),
the officer continues with the main assessment (pma). Otherwise (nc), the officer s/he
sends an acknowledgement letter to the applicant (sal) and requests further information
(rfi). After having completed the main assessment, the case officer might request for
more information (rmi), or s/he makes a decision (mdc or md). However, before making
the decision, the officer first needs to check whether circumstances have changed (ccc).
If the officer receives the requested additional information (rri), the main assessment is
performed again. However, the applicant could wait too long to supply the office with
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Fig. 1.An example reset/inhibitor net

the requested information (time expiry,te), in which case the officer needs to decide
(dte) whether to stop processing the application (sp) or to continue anyway (caw).

While the application is being processed, but before the decision is made, two events
might occur. First, an applicant may decide to withdraw his/her application (receive
withdraw,rw); second, an applicant can notify the officer that his/her circumstances (for
example, change of address) have changed (receive circumstance change,rcc). After the
application has been handled, the applicant may decide to reapply for a visa (new).

3 Reduction rules

In this section, we present eight reduction rules for reset/inhibitor nets. The underlying
rules for marked Petri nets presented in this section are based on existing reduction
rules for Petri nets and free-choice nets [13, 6], and are therefore not original as such,
rather the contribution is in the identification of the conditions under which they can be
applied in the presence of reset and inhibitor arcs.

For sake of clarity, we decided to first present applicable conditions for marked
Petri nets, before extending these rules for marked reset/inhibitor nets. We also show
that these reduction rules preserve liveness and boundedness. The style of presentation
is inspired by [6].
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3.1 Fusion of Series Transitions

Using the Fusion of Series Transitions rule, we can reduce two transitions and a place
to one transition. Thus, we can effectively remove a place and a transition. For the rule
to be applicable, we need the two transitions and place to be in a series. The place acts
as a kind of transient place for the output places of the series. Tokens from this transient
place can be considered as beingghosttokens in these output places: These ghost tokens
are not there yet, but they may arrive at any moment. If something happens to these
ghost tokens, it should happen to the tokens in the transient place. For transitions that
consume these ghost tokens, this means that the intermediate transition (the second one
in the series) should fire first.

Definition 7 (Fusion of Series Transitions Rule for marked Petri nets:φFST). Let
S1 = (N1,M1) andS2 = (N2,M2) be two marked Petri nets, whereN1 = (P1, T1, F1)
andN2 = (P2, T2, F2). (S1, S2) ∈ φFST if there exists a placep ∈ P1, two transitions
t, u ∈ T1, and a transitionv ∈ T2 \ T1 such that:

Conditions onS1:

1. •p = {t} (t is the only input ofp)
2. p• = {u} (u is the only output ofp)
3. •u = {p} (p is the only input ofu)
4. t•∩u• = ∅ (any output oft is not an output ofu and vice versa)

Construction ofS2:

5. P2 = P1 \ {p}
6. T2 = (T1 \ {t, u}) ∪ {v}
7. F2 = (F1 ∩ ((P2×T2)∪ (T2×P2)))∪ (N1• t×{v})∪ ({v}× ((tN1• ∪u

N1• ) \ {p}))
8. for all x ∈ P2: M2(x) =

{
M1(x) if x 6∈ u•
M1(x) + M1(p) if x ∈ u•

Theorem 1 (The φFST rule is boundedness and liveness preserving).LetS1 andS2

be two marked Petri nets such that(S1, S2) ∈ φFST. ThenS1 is boundediff S2 is
bounded, andS1 is live iff S2 is live.

Proof TheφFST rule is boundedness and liveness preserving [13].

Figure 2 shows both theφFST and the upcomingφRI
FST rule. As usual, transitions

are visualized using squares and places by circles. The places and transitions that are
relevant for the rule at hand are white inside, whereas the places and transitions in their
allowed environment are grey inside. To visualize that this environment might include
multiple places and/or transitions, we have stacked three places and/or transitions. Reset
arcs are visualized using a double-headed arrow, whereas inhibitor arcs are visualized
using an open dot at the end. Thus, in Figure 2, transitiont may have additional output
places, and transitionu is not allowed to reset any place (as there is no reset place foru
in the allowed environment) nor should it inhibit any place. For theφFST rule presented
in Definition 7, we simply have to ignore every reset and inhibitor arc.
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As mentioned before, this rule holds as we can consider the tokens in placep to be
matched byghosttokens in the output places of transitionu. These ghost tokens have
not arrived yet, but they will arrive when needed by firingu. From this observation, the
restrictions on reset arcs and inhibitor arcs follow in a straightforward way:

– Transitionu should not be inhibited. Asu needs to be enabled ifp is marked, any
inhibitor should be ineffective: Ifu is inhibited by some placex, thenx should be
empty whenp is marked. In some cases this can be checked using only structural
properties. However, it is not possible to formulate simple requirements. Therefore,
we simply require thatu has no inhibitor arcs.

– Transitionu should not reset. We cannot tell exactly whenu may fire. However, the
effect of these resets should always be the same: If in some firing sequenceu resets
some placex by removing 2 tokens, then in any other firing sequence it should
resetx by removing 2 tokens. As this too is hard to check using only structural
properties, we do not allowu to have any reset arcs.

– Placep and the output places of transitionu should inhibit the same set of transi-
tions. Assume that placex is an output place ofu and thatx inhibits some transition
y. As a result, transitiony should be inhibited ifx contains ghost tokens. Therefore,
placep should inhibity, and thus, every output place ofu should inhibity (as these
places may contain ghost tokens ofp as well).

– Placep and the output places of transitionu should all be reset by the same set of
transitions. Assume that placex is an output place ofu and thatx is being reset by
some transitiony. As y also resets the ghost tokens inx, it should also resetp, and
thus, all other output places ofu.

Definition 8 (Fusion of Series Transitions Rule for marked reset/inhibitor nets:
φRI

FST). Let S1 = (N1,M1) and S2 = (N2, M2) be two marked reset/inhibitor nets,
whereN1 = (P1, T1, F1, R1, I1) and N2 = (P2, T2, F2, R2, I2). (S1, S2) ∈ φRI

FST if
there exists a placep ∈ P1, two transitionst, u ∈ T1, and a transitionv ∈ T2 \ T1 such
that:

8



Extension of theφFST rule:

1. (((P1, T1, F1),M1), ((P2, T2, F2),M2)) ∈ φFST (Note that, by definition, thet, u,
v, and p mentioned in this definition have to coincide with thet, u, v, and p as
mentioned in the definition ofφFST.)

Conditions onR1:

2. for all q ∈ u•: R↼
1 (p) = R↼

1 (q) (p is being reset by the same transitions as every
output place ofu is)

3. R1(u) = ∅ (u does not reset)

Conditions onI1:

4. for all q ∈ u•: I↼
1 (p) = I↼

1 (q) (p inhibits the same transitions as every output
place ofu does)

5. I1(u) = ∅ (u is not inhibited)

Construction ofR2:

6. for all x ∈ T2: R2(x) =
{

R1(x) \ {p} if x 6= v
R1(t) \ {p} if x = v

Construction ofI2:

7. for all x ∈ T2: I2(x) =
{

I1(x) \ {p} if x 6= v
I1(t) \ {p} if x = v

We now present two lemmas that show that occurrence sequences inN1 andN2

correspond to another. These lemmas are then used to prove that theφRI
FST rule preserves

liveness and boundedness.

Lemma 1. [Under theφRI
FST rule, sequence inS1 correspond to sequences inS2] Let

S1 = (N1,M1) and S2 = (N2,M2) be two marked reset/inhibitor nets such that

(S1, S2) ∈ φRI
FST, let σ1 ∈ T ∗1 andM ′

1 ∈ IM(P1) be such thatM1
N1,σ1→ M ′

1, and let
σ2 = α(σ1), whereα ∈ T ∗1 → T ∗2 is defined as follows:

– α(ε) = ε,
– α(tσ) = vα(σ),
– α(uσ) = α(σ), and
– α(xσ) = xα(σ), wherex ∈ T1 \ {t, u}.

Thus,α removes every occurrence ofu from the sequence, and replaces every occur-

rence oft with v. ThenM2
N2,σ2→ M ′

2, whereM ′
2(x) = M ′

1(x) + M ′
1(p) for every

x ∈ u
N1• andM ′

2(x) = M ′
1(x) for everyx 6∈ u

N1• .

Proof By induction on the length ofσ1.

Base Assumeσ1 = ε. Clearly,M1
N1,σ1→ M1 andM2

N2,σ2→ M2. The where-clause
holds, asφRI

FST impliesφFST.

9



Step Assume the lemma holds for someσ1, let M ′
1 be such thatM1

N1,σ1→ M ′
1, and let

M ′
2 be such thatM2

N2,α(σ1)→ M ′
2. We prove that it also holds if we extendσ1 by

one transition.
– First, assume that we extendσ1 by t. As t and v have the same preset, we

can extendα(σ1) by v. t adds a token to placep, whereasv adds tokens to its
postset, which does not violate the where-clause.

– Second, assume that we extendσ1 by u. It is obvious thatu does not violate
the where-clause.

– Third, assume that we extendσ1 by x, wherex ∈ P1 \ {t, u}. As all places
in M ′

2 contain at least as many tokens as their counterparts inM ′
1 (the where-

clause), we know thatx is enabled inS2 at M ′
2 as well, provided it is not

inhibited by a place in the postset ofu (as these places may contain more tokens
in M ′

2 than inM ′
1). However, due to the where-clause, a transition inhibited in

S2 atM ′
2 would have been inhibited inS1 atM ′

1 as well.

Lemma 2. [Under the φRI
FST rule, sequences inS2 correspond to sequences inS1]

Let S1 = (N1,M1) andS2 = (N2,M2) be two marked reset/inhibitor nets such that

(S1, S2) ∈ φRI
FST, let σ2 ∈ T ∗2 andM ′

2 ∈ IM(P2) be such thatM2
N2,σ2→ M ′

2, and let
σ1 = β(σ2), whereβ ∈ T ∗2 → T ∗1 is defined as follows:

– β(ε) = ε,
– β(vσ) = tuβ(σ), and
– β(xσ) = xβ(σ), wherex ∈ T2 \ {v}.

Thus,β replaces every occurrence ofv with tu. ThenM1
N1,σ1→ M ′

1, whereM ′
1(p) = 0

andM ′
1(x) = M ′(x) for everyx ∈ P1 \ {p}.

Proof By induction on the length ofσ2.

Base Assumeσ2 = ε. Clearly,M2
N2,σ2→ M2 andM1

N1,σ1→ M1. The where-clause
holds, asφRI

FST impliesφFST, which also impliesM1(p) = 0.

Step Assume the lemma holds for someσ2, let M ′
2 be such thatM2

N2,σ2→ M ′
2, and let

M ′
1 be such thatM1

N1,β(σ2)→ M ′
1. We prove that is also holds if we extendσ2 by

one transition.
– First, assume that we extendσ2 by v. It is obvious thatt is enabled inS1 at

M ′
1, and thatu is enabled after having firedt. Furthermore, the combination of

tu andv does not violate the where-clause.
– Second, assume that we extendσ2 by x such thatx ∈ T2 \ {v}. Again, it is

obvious thatx is enabled inS1 at M ′
1, and thatx does no violate the where-

clause.

From these lemmas, liveness and boundedness follow in a straightforward way.

Theorem 2 (TheφRI
FST rule preserves liveness).
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Proof Assume(S1, S2) ∈ φRI
FST such thatS1 is live andS2 is not live (asφRI

FST is
symmetrical, we only need to consider this case). Thus, inS2 we can reach a marking
M ′

2 from which some transitiont cannot be enabled. Due to Lemma 2, we can reach
a markingM ′

1 in S1 such that its where-clause holds. AsS1 is live, we can reach a
markingM ′′

1 in S1 through some occurrence sequenceσ1 such thatt is enabled. Due
to Lemma 1 we can thus reach a markingM ′′

2 in S2 such that its where clause-holds.
Obviously,t should be enabled inM ′′

2 . Thus,S2 has to be live as well.

Theorem 3 (TheφRI
FST rule preserves boundedness).

Proof Assume(S1, S2) ∈ φRI
FST such thatS1 is bounded andS2 is not bounded (as

φRI
FST is symmetrical, we only need to consider this case). Thus, for everyb ∈ IN we can

reach a markingM ′
2 in S2 in which some placep contains more thanb tokens. Due to

Lemma 2, we can reach a markingM ′
1 in S1 such thatM ′

1(p) = M ′
2(p). ThusS1 has to

be unbounded as well.

The remaining reduction rules all preserve liveness and boundedness. For the Fusion
of Series Places, the required proofs for this claim are similar to the proofs presented for
the current, Fusion of Series Transitions, rule, whereas for the other rules the required
proofs are simpler. As these proofs add little or nothing to the paper, we decided not to
include them.

3.2 Fusion of Series Places

Using the Fusion of Series Places rule, we can reduce two places and one transition
to one place. Thus, like the Fusion Series Transitions rule, this rule also effectively re-
moves a transition and a place. However, the Fusion of Series Places may be applicable
in situations where the Fusion of Series Transitions rule is not. Again like the Fusion
of Series Transitions rule, this rule is applicable if the places and transitions are in a
series, and again we can use the concept of ghost tokens to explain the rule. Tokens
which reside in the first place of the series can be considered to be ghost tokens for the
second place. If some transition needs to consume these ghost tokens, the intermediate
transitions should fire first, removing the ghost tokens by real ones.

Definition 9 (Fusion of Series Places Rule for marked Petri nets:φFSP). Let S1 =
(N1,M1) andS2 = (N2,M2) be two marked Petri nets, whereN1 = (P1, T1, F1) and
N2 = (P2, T2, F2). (S1, S2) ∈ φFSP if there exist two placesp, q ∈ P1, a transition
t ∈ T1, and a placer ∈ P2 \ P1 such that:

Conditions onS1:

1. •t = {p} (p is the only input oft)
2. t• = {q} (q is the only output oft)
3. p• = {t} (t is the only output ofp)
4. •p∩•q = ∅ (any input ofp is not an input ofq and vice versa)

11



Construction ofS2:

5. P2 = (P1 \ {p, q}) ∪ {r}
6. T2 = T1 \ {t}
7. F2 = (F1 ∩ ((P2×T2)∪ (T2×P2)))∪ (((N1• p∪ N1• q) \ {t})×{r})∪ ({r}× q

N1• )

8. for all x ∈ P2: M2(x) =
{

M1(x) if x 6= r
M1(p) + M1(q) if x = r

RI
FSP

p

t

q r

Fig. 3. Fusion of series places

Tokens in placep are matched by ghost tokens in placeq. Again, these tokens have
not arrived yet, but they will materialize if needed by firing transitiont. Again, the
restrictions on reset arcs and inhibitor arcs follow in a straightforward way from this
observation:

– Transitiont should not be inhibited. As it is hard to check on ineffective inhibitor
arcs, we simply require thatt has no inhibitor arcs.

– Transitiont should not reset. As it is hard to check that every reset has the same
effect, we simply require thatt has no reset arcs.

– Placep should be inhibited by the same set of transitions as placeq.
– Placep should be being reset by the same set of transitions as placeq.

Definition 10 (Fusion of Series Places Rule for marked reset/inhibitor nets:φRI
FSP).

Let S1 = (N1,M1) and S2 = (N2,M2) be two marked reset/inhibitor nets, where
N1 = (P1, T1, F1, R1, I1) and N2 = (P2, T2, F2, R2, I2). (S1, S2) ∈ φRI

FSP if there
exist two placesp, q ∈ P1, a transitiont ∈ T1, and a placer ∈ P2 \ P1 such that:

Extension of theφFSP rule:

1. (((P1, T1, F1),M1), ((P2, T2, F2),M2)) ∈ φFSP (Note that, by definition, thep,
q, t, andr mentioned in this definition have to coincide with thep, q, t, andr as
mentioned in the definition ofφFSP.)

12



Conditions onR1:

2. R1(t) = ∅ (t does not reset)
3. R↼

1 (p) = R↼
1 (q) (p andq are being reset by the same transitions)

Conditions onI1:

4. I1(t) = ∅ (t does not have inhibitor arcs)
5. I↼

1 (p) = I↼
1 (q) (p andq have the same set of inhibitor arcs)

Construction ofR2:

6. for all x ∈ T2: R2(x) =
{

(R1(x) \ {p, q}) ∪ {r} if {p, q} ∩R1(x) 6= ∅
R1(x) if {p, q} ∩R1(x) = ∅

Construction ofI2:

7. for all x ∈ T2: I2(x) =
{

(I1(x) \ {p, q}) ∪ {r} if {p, q} ∩ I1(x) 6= ∅
I1(x) if {p, q} ∩ I1(x) = ∅

3.3 Fusion of Parallel Transitions

Using the Fusion of Parallel Transitions rule, we can reduce a number of transitions to
one transition. This rule is applicable if all transitions have the same set of input places
and the same set of output places. Clearly, all transitions are enabled at the same time,
and all have the same effect.

Definition 11 (Fusion of Parallel Transitions Rule for marked Petri nets: φFPT).
Let S1 = (N1,M1) and S2 = (N2, M2) be two marked Petri nets, whereN1 =
(P1, T1, F1) andN2 = (P2, T2, F2). (S1, S2) ∈ φFPT if there exists transitionsV ⊆ T1

where|V | ≥ 2, an arbitrary transitiont ∈ V , and a transitionv ∈ T2 \ T1 such that:
Conditions onS1:

1. for all x, y ∈ V : •x = •y (input places for all transitions inV are identical)
2. for all x, y ∈ V : x• = y• (output places for all transitions inV are identical)

Construction ofS2:

3. P2 = P1

4. T2 = (T1 \ V ) ∪ {v}
5. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2))) ∪ (N1• t× {v}) ∪ ({v} × t

N1• )
6. M2 = M1

As the transitions should be enabled at the same times, either all or none should be
inhibited. As a check on ineffective inhibitor arcs is hard, we simply require the transi-
tions to have the same set of inhibitors. Furthermore, their effects should be identical.
As it is hard to check when the effect of a transition that resets some place is identical
to the effect of a transition that does not reset that place, we simply require that every
transition resets the same set of places.

Definition 12 (Fusion of Parallel Transitions Rule for marked reset/inhibitor nets:
φRI

FPT). Let S1 = (N1, M1) and S2 = (N2,M2) be two marked reset/inhibitor nets,
whereN1 = (P1, T1, F1, R1, I1) andN2 = (P2, T2, F2, R2, I2). (S1, S2) ∈ φRI

FPT if
there exists transitionsV ⊆ T1 where|V | ≥ 2, an arbitrary transitiont ∈ V , and a
transitionv ∈ T2 \ T1 such that:

13
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Fig. 4.Fusion of parallel transitions

Extension of theφFPT rule:

1. (((P1, T1, F1),M1), ((P2, T2, F2),M2)) ∈ φFPT (Note that, by definition, theV
andv mentioned in this definition have to coincide with theV andv as mentioned
in the definition ofφFPT.)

Condition onR1:

2. for all x, y ∈ V : R1(x) = R1(y) (all transitions inV reset the same places)

Condition onI1:

3. for all x, y ∈ V : I1(x) = I1(y) (all transitions inV share the same set of inhibitor
arcs)

Construction ofR2:

4. for all x ∈ T2: R2(x) =
{

R1(x) if x 6= v
R1(t) if x = v

Construction ofI2:

5. for all x ∈ T2: I2(x) =
{

I1(x) if x 6= v
I1(t) if x = v

3.4 Fusion of Parallel Places

Using the Fusion of Parallel Places rule, we can reduce a number of places to one place.
This rule is applicable if all places have the same set of input transitions and the same
set of output transitions. Clearly, only a place among these places that initially contains
the fewest tokens can become empty and can, hence, disable any transitions. Therefore,
all other places are implicit and can be removed.

14



Definition 13 (Fusion of Parallel Places Rule for marked Petri nets:φFPP).
Let S1 = (N1,M1) and S2 = (N2, M2) be two marked Petri nets, whereN1 =
(P1, T1, F1) andN2 = (P2, T2, F2). (S1, S2) ∈ φFPP if there exists placesQ ⊆ P1

where|Q| ≥ 2, an arbitrary placep ∈ Q and a placeq ∈ P2 \ P1 such that:

Conditions onS1:

1. for all x, y ∈ Q : •x = •y (input transitions for all places inQ are identical)
2. for all x, y ∈ Q : x• = y• (output transitions for all places inQ are identical)

Construction ofS2:

3. P2 = (P1 \Q) ∪ {q}
4. T2 = T1

5. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2))) ∪ (N1• p× {q}) ∪ ({q} × p
N1• )

6. for all x ∈ P2: M2(x) =
{

M1(x) if x 6= q
miny∈QM1(y) if x = q

RI
FPP

p1

pL

t1 tN

x1 xM

q

t1 tN

x1 xM

Fig. 5.Fusion of parallel places

When adding reset arcs and inhibitor arcs, we should guarantee that the other places
remain implicit. Thus, these other places should always contain at least as many tokens
as the place we keep. Therefore, any transition that resets any other place, should also
reset the place we keep. However, we may not allow the other places to become un-
bounded if the place we keep is bounded. For this reason, we require that any transition
that resets the one place, should also reset all other places. As a result, we require that
all places inQ are being reset by the same set of transitions. However, for inhibitor arcs
something similardoes not hold. Figure 6 shows an example where the rightmost par-
allel place contains more tokens than the leftmost place. Note that we may not initialize
the place in the right-hand net with two tokens, as this would allow for two firings of
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transitionv. In both marked nets transitionv can fire once, but the left-hand net is then
dead, whereas the right-hand net is not. Clearly, this is caused by the fact that a token
was left in the right-most parallel place (of the left-hand net), which inhibits transition
t. For this reason, we do not allow a parallel place to inhibit a transition if initially it
contains more tokens than its sibling places. Note that due to reset arcs both places may
be drained from tokens, after which we could allow an inhibitor arc for both places.
However, as there is no simple way to guarantee (using only structural information) that
the parallel places have to be reset before they can inhibit, we do not use this insight.

Definition 14 (Fusion of Parallel Places Rule for marked reset/inhibitor nets:φRI
FPP).

Lets1 = (N1,M1) andS2 = (N2,M2) be two reset nets, whereN1 = (P1, T1, F1, R1, I1)
andN2 = (P2, T2, F2, R2, I2). (S1, S2) ∈ φRI

FPP if there exists placesQ ⊆ P1 where
|Q| ≥ 2 and a placeq ∈ P2 \ P1 such that:

Extension of theφFPP rule:

1. (((P1, T1, F1),M1), ((P2, T2, F2),M2)) ∈ φFPP (Note that, by definition, theQ
andq mentioned in this definition have to coincide with theQ andq as mentioned
in the definition ofφFPP.)

Condition onR1:

2. for all x, y ∈ Q : R↼
1 (x) = R↼

1 (y) (all places inQ are being reset by the same
transitions)

Condition onI1:

3. for all x ∈ Q : if M1(x) > miny∈QM1(y) thenI↼
1 (x) = ∅ (only places with a

minimal initial marking may inhibit transitions)

Construction ofR2:

4. for all x ∈ T2: R2(x) =
{

(R1(x) \Q) ∪ {q} if R1(x) ∩Q 6= ∅
R1(x) if R1(x) ∩Q = ∅

Construction ofI2:

5. for all x ∈ T2: I2(x) =
{

(I1(x) \Q) ∪ {q} if I1(x) ∩Q 6= ∅
I1(x) if I1(x) ∩Q = ∅
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3.5 Elimination of Self-Loop Transitions

Using the Elimination of Self-Loop Transitions rule, we can remove a self-loop transi-
tion, that is, a transition that has only one input place and only one output place, and
for which the input place and the output place are identical. Clearly, firing the transition
does not have any effect. Thus, removing the transition does not effect boundedness.
However, removing it could affect liveness, as it can be the only non-live transition.
To prevent this, we require that the input/output place has at least one additional input
transition.

Definition 15 (Elimination of Self-Loop Transitions Rule for marked Petri nets:
φELT). Let S1 = (N1,M1) and S2 = (N2,M2) be two marked Petri nets, where
N1 = (P1, T1, F1) and N2 = (P2, T2, F2). (S1, S2) ∈ φELT if there exists a place
p ∈ P1, and a transitiont ∈ T1 such that:
Conditions onS1:

1. •t = {p} (p is the only input place oft)
2. t• = {p} (p is the only output place oft)
3. |•p| ≥ 2 (p has at least one additional input transition)

Construction ofS2:

4. P2 = P1

5. T2 = T1 \ {t}
6. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2)))
7. M2 = M1

p t

RI
ELT

p

Fig. 7. Elimination of self-loop transitions

Clearly, after reset arcs and inhibitor arcs have been added,t should be enabled at
some point in time, and its effect should not result in a new marking. Thus:

– any place that inhibitst should be emptiable while placep is marked, and
– t should not reset any place.

As the first requirement is hard to obtain from the structure of the marked net, we simply
require thatt is not inhibited at all.

Definition 16 (Elimination of Self-Loop Transitions Rule for marked reset/inhibitor
nets: φRI

ELT). Let S1 = (N1,M1) and S2 = (N2, M2) be two marked reset/inhibitor
nets, whereN1 = (P1, T1, F1, R1, I1) andN2 = (P2, T2, F2, R2, I2). (S1, S2) ∈ φRI

ELT

if there exists a placep ∈ P1 ∩ P2 and a transitiont ∈ T1 such that:
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Extension of theφELT rule:

1. (((P1, T1, F1),M1), ((P2, T2, F2),M2)) ∈ φELT (Note that, by definition, thet
andp mentioned in this definition have to coincide with thet andp as mentioned in
the definition ofφELT.)

Condition onR1:

2. R1(t) = ∅ (t does not reset)

Condition onI1:

3. I1(t) = ∅ (t does not have any inhibitor arcs)

Construction ofR2:

4. for all x ∈ T2: R2(x) = R1(x)

Construction ofI2:

5. for all x ∈ T2: I2(x) = I1(x)

3.6 Elimination of Self-Loop Places

The Elimination of Self-Loop Places rule can be used to remove places that are always
marked. As a result, these places never disable any output transition.

Definition 17 (Elimination of Self-Loop Places for marked Petri nets:φELP). Let
S1 = (N1,M1) andS2 = (N2,M2) be two marked Petri nets, whereN1 = (P1, T1, F1)
andN2 = (P2, T2, F2). (S1, S2) ∈ φELP if there exists a placep ∈ P1 \ P2 such that:
Conditions onS1:

1. p• = •p (the inputs ofp are also its outputs)
2. M1(p) ≥ 1 (p is marked atM1)

Construction ofS2:

3. P2 = P1 \ {p}
4. T2 = T1

5. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2)))
6. for all x ∈ P2: M2(x) = M1(x)

Clearly, placep should not inhibit any transition. Furthermore, to ensure that the
place is always marked, any transition that removes tokens from this place should put
at least one token back. Thus, any transition that resetsp should also put a token inp.
However, a transition that resetsp and puts a token inp does not need to consume a
token using a normal input arc. Therefore, theφRI

ELP rule is not a simple extension of
theφELP rule. This is illustrated by the two sets of transitions in Figure 8.

Definition 18 (Elimination of Self-Loop Places Rule for marked reset/inhibitor
nets: φRI

ELP). Let S1 = (N1,M1) and S2 = (N2,M2) be two marked reset/inhibitor
nets, whereN1 = (P1, T1, F1, R1, I1) andN2 = (P2, T2, F2, R2, I2). (S1, S2) ∈ φRI

ELP

if there exists a placep ∈ P1 \ P2 such that (note that theφRI
ELP rule is not a simple

extension of theφELP rule, as the first condition can be weakened):
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Fig. 8.Elimination of self-loop places

Conditions onS1:

1. p• ⊆ •p (the outputs ofp are also inputs)
2. M1(p) ≥ 1 (p is marked atM1)

Condition onR1:

3. R↼
1 (p) ∪ p• = •p (every reset transition or output transition should also be an

input transition)

Condition onI1:

4. I↼
1 (p) = ∅ (p does not inhibit any transition)

Construction ofS2:

5. P2 = P1 \ {p}
6. T2 = T1

7. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2)))
8. for all x ∈ P2: M2(x) = M1(x)

Construction ofR2:

9. for all x ∈ T2: R2(x) = R1(x) ∩ P2

Construction ofI2:

10. I2 = I1

3.7 Abstraction

Like the Fusion of Series Transitions rule and the Fusion of Series Places rule, using
the Abstraction rule, we can remove a place and a transition. In fact, the Abstraction
rule is in some way a mix of both fusion rules. Like both fusion rules, this rule can
be understood using the concept of ghost tokens. Basically, we can replace a place-
transition pair (where the place is the only input of the transition and the transition is
the only output of the place) by a number of arcs connecting every input transition of
the place to every output place of the transition, thus bypassing both. Any token in the
place is matched by ghost tokens in the output places of the transition. If needed, these
ghost tokens can materialize by firing the transition.
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Definition 19 (Abstraction Rule for marked Petri nets: φA). Let S1 = (N1, M1)
and S2 = (N2,M2) be two marked Petri nets, whereN1 = (P1, T1, F1) and N2 =
(P2, T2, F2). (N1, N2) ∈ φA if there exists placesQ ⊆ P1 ∩ P2, a places ∈ P1 \ Q,
transitionsU ⊆ T1 ∩ T2, and a transitiont ∈ T1 \ U such that:

Conditions onS1:

1. •t = {s} (s is the only input oft)
2. s• = {t} (t is the only output ofs)
3. •s = U (transitions inU are input transitions fors)
4. t• = Q (places inQ are output places fort)
5. (•s× t•)∩F = ∅ (any input ofs is not connected to an output oft and vice versa)

Construction ofS2:

6. P2 = P1 \ {s}
7. T2 = T1 \ {t}
8. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2))) ∪ (N1• s× t

N1• )

9. for all x ∈ P2: M2(x) =
{

M1(x) if x 6∈ Q
M1(x) + M1(s) if x ∈ Q

RI
A
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u1 uN

t

q1 qM

u1 uN

q1 qM

Fig. 9. Abstraction

Like with the fusion rules, transitiont should not be inhibited, as this might disable
the firing oft. Also likewise,t should not reset any place. Like with the Fusion of Series
Transitions rule, places should inhibit the same set of transitions as every output place
of t does, and it is being reset by the same set of transitions that reset every output place
of t.
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Definition 20 (Abstraction Rule for marked reset/inhibitor nets: φRI
A ). Let S1 =

(N1,M1) andS2 = (N2,M2) be two marked reset/inhibitor nets, whereN1 = (P1, T1,
F1, R1, I1) andN2 = (P2, T2, F2, R2, I2). (S1, S2) ∈ φRI

A if there exists placesQ ⊆
P1 ∩P2, a places ∈ P1 \Q, transitionsU ⊆ T1 ∩T2, and a transitiont ∈ T1 \U such
that:

Extension of theφR
A rule:

1. (((P1, T1, F1),M1), ((P2, T2, F2),M2)) ∈ φA (Note that, by definition, thes, t, Q,
andU mentioned in this definition have to coincide withs, t, Q, andU as mentioned
in the definition ofφA.)

Conditions onR1:

2. R↼
1 (s) = R↼

1 (q), for everyq ∈ Q (s is being reset by transitions that resetQ)
3. R1(t) = ∅ (t does not reset)

Conditions onI1:

4. I↼
1 (s) = I↼

1 (q), for everyq ∈ Q (s inhibits the same transitions as every place
fromQ does)

5. I1(t) = ∅ (t is not inhibited by any place)

Construction ofR2:

6. for all x ∈ T2: R2(x) = R1(x) ∩ P2

Construction ofI2:

7. for all x ∈ T2: I2(x) = I1(x) ∩ P2

3.8 Reset reduction

If a transitionu resets a place that inhibits it, then the reset arc is clearly redundant: The
transition can only fire if the place is empty. Note that the place may optionally be an
input place and/or output place ofu as well (if it is an input place as well,u will be dead
of course, but the rule still applies).

Definition 21 (Reset Reduction Rule for marked reset/inhibitor nets:φRI
R ). Let

S1 = (N1,M1) andS2 = (N2,M2) be two marked reset/inhibitor nets, whereN1 =
(P1, T1, F1, R1, I1) and N2 = (P2, T2, F2, R2, I2). (S1, S2) ∈ φRI

R if there exists a
placeu ∈ P1 ∩ P2 and a transitiont ∈ T1 ∩ T2 such that:

Conditions onS1:

1. p ∈ R1(u) ∩ I1(u)
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Construction ofS2:

2. P2 = P1

3. T2 = T1

4. F2 = F1

5. for all x ∈ T2: R2(x) =
{

R1(x) if x 6= u
R1(x) \ {p} if x = u

6. I2 = I1

7. M2 = M1

3.9 The visa example

To illustrate what we can achieve by reduction, we apply the rules defined earlier to the
visa example shown in Figure 1. Figure 11 shows this example with a number of pos-
sible reductions highlighted. Figure 12 shows the visa example after all the reductions
shown in Figure 11 have been applied. Clearly, some of the reduction rules can still be
applied. Figure 13 shows the example after two rounds of reduction rules have been
applied. As this figure shows, no more reduction rules can be applied now.

As a result of applying the reduction rules on the visa example, the number of places
is reduced from 21 to 9, and the number of transitions drops from 26 to 13. As a result,
the number of reachable states is reduced from 50 to 11. This will make it easier to
determine both boundedness and liveness and other related properties. Note that the
visa example only has a few states. Hence the reduction in states is not very spectacular.
However, for more realistic examples the state space grows very rapidly. As shown in
different studies (e.g., [1, 9]) reduction rules can reduce the state space dramatically.
Given the generic character of the rules presented in this paper, we are confident that
we can obtain similar results for Petri nets extended with reset arcs and inhibitor arcs.

4 Related work

In the general area of reset nets, Dufourd et al.’s work has provided valuable insights
into the decidability of various properties of reset nets including reachability, bound-
edness and coverability [7, 8]. The use of backwards coverability techniques to analyse
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Fig. 11.The visa example with possible reductions

reset nets is discussed in [11, 10]. In [14, 15], the extension to Petri nets using inhibitor
arcs is mentioned. The reachability problem of Petri nets with one inhibitor arc is stud-
ied in [16] and shown to be decidable. The reachability problem of Petri nets with at
least two inhibitor arcs is shown to be undecidable [12]. In [3], the author focuses on
expressiveness of inhibitor arcs and shows that an extension of coverability tree con-
struction could be used as an analysis technique for Petri nets with inhibitor arcs. In [4],
the authors propose an extension to coloured Petri nets with inhibitor arcs that supports
both zero-testing inhibitors and threshold inhibitors.

A number of authors have investigated reduction rules for Petri nets and for various
subclasses of Petri nets. Berthelot presents a set of reduction rules for general Petri nets,
which includes transformations on places such as structurally redundant places, double
places and equivalent places and fusion of transitions such as post-fusion, pre-fusion
and lateral fusion [2]. These rules provided the inspiration for our work. In [13], six
reduction rules are presented for Petri nets and this set of rules has been used as a start-
ing point for the rules in this paper. In [6], a set of reduction rules was proposed for
free-choice Petri nets while preserving well-formedness. In [17], the authors extend the
reduction rules given by Berthelot for Time Petri nets. As part of our work on work-
flow verification, a set of soundness preserving reduction rules for YAWL models was
presented in [18]. In this technical report similar ideas are applied to YAWL workflows
with cancellation regions and OR-joins.

In [9] a comprehensive comparison of the different state-space reduction techniques
is reported. Here, different reduction techniques are applied to both artificial and real-
life examples. The study shows that the classical Petri net reduction rules (for nets
without reset arcs and inhibitor arcs) perform very well and are able to reduce state-
spaces dramatically. This illustrates the practical relevance of the results reported in this
paper.
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5 Conclusion

It is widely known that applying reduction rules to large Petri nets can dramatically
reduce the time it takes to perform all kinds of analyses. Typically, a reduction rule will
decrease the number of elements under consideration by removing certain transitions
and/or places in the net while preserving some interesting properties. For Petri nets
extended with reset arcs and inhibitor arcs, the existing Petri net reduction rules do not
apply since each rule can be invalidated by the presence of reset arcs and/or inhibitor
arcs.

In this paper, we have presented a set of eight reduction rules for reset/inhibitor nets
that are liveness and boundedness preserving. These reduction rules are generic and
easy to implement. We used an example to illustrate the applicability of our approach.
The results allow for potentially spectacular reductions of the state space and, therefore,
facilitate a more efficient analysis of reset/inhibitor nets.

In our view these results are highly relevant because real-life modelling languages
such as UML, BPEL, BPMN, etc. have features such as cancellation and blocking that
correspond directly to reset and inhibitor arcs. Moreover, model translations typically
introduce lots of “dummy” transitions that do not correspond to real events. The results
presented in this paper therefore potentially allow for a substantial speed-up of any
form of Petri-net-based analysis using languages such as UML, BPEL and BPMN as a
starting point.
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