Process Mining Framework for
Software Processes

V. Rubin!?, C.W. Giinther!', Wil M.P. van der Aalst!,
E. Kindler?, B.F.van Dongen', and W. Schéfer?

! Eindhoven University of Technology, Eindhoven, The Netherlands
{c.w.gunther,w.m.p.v.d.aalst,b.f.v.dongen}@tue.nl
2 University of Paderborn, Paderborn, Germany
{vroubine,kindler,wilhelm}@uni-paderborn.de

Abstract. Software development processes are often not explicitly mod-
elled and sometimes even chaotic. In order to keep track of the involved
documents and files, engineers use software configuration management
systems. Along the way, those systems collect and store information on
the software development process itself. In this paper, we show how this
information can be used for constructing explicit process models, which is
called process mining; and we show how the Process Mining Framework
ProM can help engineers in obtaining a process model and in analysing,
optimising and better understanding their software processes.

1 Introduction

Software and information systems are still becoming more and more complex.
This is a result of the increased functionality and a much higher integration and
interaction of different kinds of software and systems. Therefore, the process of
software and system’s engineering is an important challenge. In fact, the engi-
neering of software has become more complicated than the classical engineering
of physical products. One of the distinguishing features of any engineering effort
is the fact that process engineers create, change, update and revise all kinds of
documents and files. In order to cope with the vast amount of data, documents,
and files, engineers use different kinds of Document Management Systems such as
Product Data Management (PDM) systems, repositories, and Software Config-
uration Management (SCM) systems (e.g., CVS and Subversion). In addition to
the requirements, design and implementation documents, these systems collect
and store information on the actual engineering process: Who created, accessed
or changed which documents?, When was a particular task completed?, etc.
The engineering processes themselves, however, are often not well-documented
and sometimes even chaotic. Despite the use of document management systems,
engineering processes tend to be far less structured than production processes.
In order to help engineers to identify, to better understand, to analyse, to op-
timise, and to execute their engineering processes, the process data stored in
the Software Configuration Management, can be used for making the underlying

engineering processes explicit in terms of one or more process models. We call
this software process mining, i.e., by extracting information from systems such as
CVS and Subversion and analyzing this information, new models are generated
or existing models are confronted with reality.

Process models and software process models cover different aspects. Here,
we consider the main aspects only: the control aspect captures the order in
which tasks are executed (i.e., the control-flow), the information aspect captures
the data, documents, and information needed and produced by a task, and the
organisation aspect captures which persons in which role execute a task. To
mining different aspects of software development processes — sometimes called
multi-perspective mining — we need to exploit different algorithms. Sometimes,
we need even different algorithms for mining a model for a single aspect. In order
to make all these algorithms available under a single user interface, we use the
ProM framework [21] as a platform. ProM provides a wide variety of algorithms
and supports process mining in the broadest sense. It can be used to discover
processes, identify bottle-necks, analyze social networks, verify business rules,
etc. Using ProMImport it is also possible to extract information from different
sources including SCM systems such as CVS and Subversion.

The focus of this paper is on providing an overview of the application of
process mining to software development processes. Although we do not focus on
particular algorithms, we introduce a two-step approach to extracting Petri nets
from event logs. In the first step a transition system is constructed and in the
second step this transition system transformed into a Petri net. Moreover, we
discuss in which other ways ProM can help software engineers in dealing with
their processes.

The remainder of this paper is organized as follows. First, we present related
work. Then, we discuss the application of process mining in software engineering
environments. Then, we provide an overview of process mining approaches and
the tool support offered by ProM. In Section 5 we show the application of process
mining to the Subversion logs of the ArgoUML project where we analyzed five
subprojects. Section 6 concludes the paper.

2 Related Work

The capabilities of using software repositories for deriving information about the
software projects are being researched in the domain of mining software reposi-
tories [1,2]. Like in our approach, SCM systems such as CVS and Subversion are
used as sources of input information. They are used for measuring the project ac-
tivity and the amount of produced failures, for detecting and predicting changes
in the code, for providing guidelines to newcomers to an open-source project,
and for detecting the social dependencies between the developers [32, 40, 18]. In
this area, SCMs are mostly used for detecting dependencies on the code level,
whereas we make an effort at building process models and doing analysis on the
modeling level.

Researchers and practitioners recognize already the benefits of software pro-
cess modelling with the aid of software repositories [36, 26, 33, 37]. Formerly, pro-
cess modelling and improvement was mainly based on what practitioners said
about their process (interviews, questionnaires); nowadays, process improvement
can be ruled by what was actually done during the software development process.
The researchers from this domain examine bug reports for detecting defect life-
cycles, e-mails and SCMs for analysing the requirement engineering processes
and coordination processes between developers, their productivity and participa-
tion, etc. Although this research direction is dealing with software processes and
process models, there is still a lack of algorithms for producing formal models.

In addition to the software process and business process domains, the research
concerning discovering the sequential patterns treats similar problems in the
area of data mining. The work of Agrawal and Srikant deals with discovering
sequential patterns in the databases of customer transactions [10].

Since the mid-nineties several groups have been working on techniques for
process mining, i.e., discovering process models based on observed events. In [6]
an overview is given of the early work in this domain. The idea to apply process
mining in the context of workflow management systems was introduced in [9)].
However, we argue that the first papers really addressing the problem of process
mining appeared around 1995, when Cook et al. [13,15,11,12,14] started to
analyze recorded behaviour of processes in the context of software engineering,
acknowledging the fact that information was not complete and that a model was
to be discovered that reproduces at least the log under consideration, but it may
allow for more behaviour.

A complete overview of recent process mining research is beyond the scope
of this paper. Therefore, we limit ourselves to a brief introduction to this topic
and refer to [6,7] and the http://www.processmining.org web page for a more
complete overview.

3 Process Mining for Software Engineering Environments

In this section, we first explain a traditional software engineering environment
schema inspired by the work in the area of process-centered software engineering
environments (PSEE) and software processes [19, 23,24, 34]. Then, we present
the ideas of the incremental workflow mining approach and, finally, explicitly
state the main problem treated in this paper.

3.1 Incremental Workflow Mining Approach

Figure 1 gives an overview of the architecture of a traditional PSEE and rep-
resents how our incremental workflow mining approach is integrated to this
architecture: The environment consists of software repositories, such as SCM
system, defect tracking system, e-mail and websites, news archives and discus-
sion forums. The software product (models, documents, source code, etc...) and
the interaction between practitioners (the users who develop this product) are

supported and maintained in the repositories. In the traditional schema, the Pro-
cess Engineer (project manager or process engineering department) designs the
process model using his experience and existing approaches, like V-model [22],
RUP [27], etc. Then, the model is instantiated and practitioners follow it during
the product life cycle, indicated by the white arrows in Fig. 1.

Software Repositories Practitioner Process Engineer,
Manager
Process
> — Model O
‘ E-mails H Websites ‘ ode
- - Discovery
‘ Defect Tracking System ‘ Process
S - Improvement
Mining
- Monitoring

Software Document
Configuration Log
Management System

Fig. 1. Process-centered Software Engineering Environment: Traditional and Incre-
mental Workflow Mining Schemes

There are the following problems with this schema: The designed process
model is prescriptive, i.e. it does not necessarily reflect the actual way of work in
the company. Human possibilities in detecting discrepancies between the process
model and the actual process are limited. Practitioners are not involved in the
design of the process model, in spite of the fact that they are the best specialists
in the parts of the process that they carry out.

The main ideas of the incremental workflow mining approach were described
already in our previous work [28, 29]. In this approach we go the other direction,
it is shown with gray arrows in Fig. 1: We take the audit trail information
(document log) of the SCM system, which corresponds to the process instances
(particular executions of the process) and, using our process mining algorithms,
derive the process model from it. Then, the process model can be analyzed,
verified and shown to the process engineer; he decides which changes should be
introduced to the process to optimize and to manage it in a better way. Actually,
the mining approach can be used not only for discovery, but also for monitoring
and improving real software processes using the data from software repositories
in general and SCM systems in particular. So, process mining is useful not only in
a setting where there is no explicit process model and much flexibility is allowed
(it is especially relevant for the software development processes), but also in a
setting where the model exists already.

In the software engineering environments, it is usually difficult to introduce
a process management system directly from scratch. The real process is very
complicated and different people are working concurrently on different parts of
the project. Using our approach in a batch mode, we gather the existing logs of

Table 1. Document Log

[Document [Date [Author [Comment]
projectl/models/design.mdl 01.01.05 14:30|designer [initial
projectl/src/Code.java 01.01.05 15:00|developer |implemented
projectl/tests/testPlan.xml 05.01.05 10:00|qaengineer| manual
projectl/docs/review.pdf 07.01.05 11:00|manager |review was done
project2/models/design.mdl 01.02.05 11:00|designer [initial
project2/tests/testPlan.xml 15.02.05 17:00|qaengineer| manual
project2/src/NewCode.java 20.02.05 09:00|developer [some new code
project2/docs/review.pdf 28.02.05 18:45|designer |review was written
project3/models/design.mdl 01.03.05 11:00|designer [initial
project3/models/verification.xml|15.03.05 17:00|qgaengineer|pending
project3/src/GenCode.java 20.03.05 09:00|designer |generated
project3/review/Areview.pdf 28.03.05 18:45|manager [review done

several process instances and automatically generate a model from them. Still,
it is almost impossible to do it in one step without incrementally improving the
knowledge of the process management system and the people’s habit of relying
on it. Thus, our approach works also incrementally, i.e. as soon as new data
is added to the repositories, we refine the overall process model. Following this
approach, when the process models are discovered, they must be inserted to the
Process Management System, where they are maintained and executed. The role
of the Process Management System changes over time: at the beginning, it is
utilized only for storing the newly discovered models; after further refinements,
when process models become more faithful, the system starts advising the users
and controlling their work in the company. We call it gradual process support.

3.2 Input Information and Problem Statement

According to the description of the incremental workflow mining approach given
in the previous section, the input information comes from software repositories.
At present, we focus on the logs of SCM systems and make our experiments with
them, but the approach and the algorithms are more general: they also deal with
the information derived from other software repositories.

In Table 1, we present an example of the audit trail information from an SCM
system. SCM systems record the events corresponding to the commits of docu-
ments (documents are committed to the system by the users). The sequence of
these events constitutes a document log. The document log contains the following
information: names of the committed documents, timestamps, author names and
comments. Document logs with similar structure can be derived from different
SCM systems, such as CVS, Subversion, SourceSafe, Clear Case and others.

When we deal with the document logs, we have to answer the following
questions: how to identify the cases (process instances), how to identify the
document types, how to abstract from the details of the log, and how to ignore
unnecessary information. For many software projects, a case corresponds to a
subproject, a plugin or a special repeatable phase of product development. In
our example, a case corresponds to a project. We detect the documents types by

detecting the similarity of paths and names, see Sect. 4.1 for details®. The same
technique is used for abstracting from the log details and for ignoring the noise,
i.e. ignoring the exceptional infrequent commits. However, the latter problems
should be treated both on the log level and on the algorithm level, see Sect. 4.2.

Now, after introducing the structure of document logs, we state the problem:
Multi-perspective Software Process Mining from the Document Logs of SCM sys-
tems. Multi-perspective means that we deal not only with control-flow, but also
with organizational and informational perspectives, since the information about
them is also available in the document logs (documents and authors).

4 Process Mining Algorithms and Tool Support

In this section, we present the algorithms for multi-perspective software pro-
cess mining. In the area of process mining, there are different algorithmic ap-
proaches, which derive the control-flow, the organizational and the informational
models from the event logs. The events in these logs correspond to process activi-
ties produced by Workflow Management Systems (WfMS), Enterprise Resource
Planning (ERP) systems or other systems providing process support. In our
application area, we have information about the commits of documents, which
occur in SCM systems, but generally can also occur in other systems, like Prod-
uct Data Management (PDM). All the presented algorithms are integrated as
plugins to the ProM tool [21], which is described at the end of this section.

4.1 Abstraction on the Log Level

As it was already pointed out in Sect. 3.2, the document logs often contain
either too many details or very specific document names and paths, which are
not relevant for the process mining algorithms. Thus, we need a technique to
abstract from the concrete names and paths or even to ignore some paths. We
call it abstraction on the log level. The ProM tool contains a set of filters, which
helps us solving this problem. One of the most mature filters in this context is
the remap filter.

The remap filter supports mapping the names of documents from the docu-
ment log to the abstract names. With the help of regular expressions, we specify
the paths that should be mapped to the abstract names. For example, if the path
contains “/models/”, the filename contains “design” and has extension “.mdl”,
then it could be mapped to “DES”. In the similar way all the “.java” files are
mapped to “CODE”; test plans — to “TEST”, review documents — to “REV”
and verification results — to “VER”. Table 2 shows the result of this filter applied
to the log of Table 1. Additionally, if we want to ignore test plans, for example,
then we map corresponding regular expression to an empty name.

3 Theoretically, detecting the document types is a challenging task, which requires
additional information, which is not available in the logs; an idea was proposed in
our paper [30].

Table 2. Filtered Software Log

[Document[Date

[Author |

DES 01.01.05 14:30|designer
CODE 01.01.05 15:00|developer
TEST 05.01.05 10:00|qaengineer
REV 07.01.05 11:00|manager
DES 01.02.05 11:00|designer
TEST 15.02.05 17:00|qaengineer
CODE 20.02.05 09:00|developer
REV 28.02.05 18:45|designer
DES 01.03.05 11:00|designer
VER 15.03.05 17:00|qaengineer
CODE 20.03.05 09:00|designer
REV 28.03.05 18:45|manager

TS
Petri Net
Synthesis |PN ,-‘:"‘,ﬁ

- w_‘: o)

Transition System

Document | Generation
Log

Fig. 2. Generation and Synthesis Approach Scheme

Thus, using this filter, we solve the problem of documents of the same type
that have different names in different projects and provide the possiblity to make
an abstraction from the given log.

4.2 Control-flow Mining

In this section, we describe the control-flow mining algorithms. When dealing
with the control-flow, the log can be represented as a set of sequences of docu-
ments (sequences are also called cases, traces or execution logs). In our example,
the log contains three cases: (DES,CODE, TEST, REV),
(DES,TEST,CODE,REV), and (DES,VER,CODE,REV).

Generation and Synthesis Approach The approach presented in this section
is a two-step approach (see Fig. 2): (Step 1) it takes a document log and generates
a transition system (T'S) from it; (Step 2) it synthesizes a Petri Net (PN) from
the transition system.

One of the main advantages of the approach is the capability to construct
transition systems and, then, to apply different modification strategies depend-
ing on the desired degree of generalization; we call it “clever” transition sys-
tem generation or abstraction on the model level. Since software logs usually
do not contain all possible traces and, thus, represent only a part of a possible
behaviour, and since they contain a lot of unnecessary details that must be ig-
nored, we should use the generation strategies to resolve these issues. Despite

the fact that transition systems are a good specification technique for making
experiments, they are usually huge, since they encode such constructs as concur-
rency or conflict in a sequential way. Thus, the algorithms developed within such
a well-known area of Petri net theory as Petri net synthesis and theory of re-
gions [17] are used for transforming transition systems (state-based specification)
to Petri nets (event-based specification), which are more compact. Furthermore,
the whole set of well-developed process analysis and verification techniques from
the area of Petri nets are available for the generated models; then, the Petri net
models can be converted to EPCs and other formalisms supported by different
existing Process Management Systems.

The transition system shown in Fig. 3 is constructed from the log given in
Table 2. In this example, a state is defined as a set of documents representing the
complete history of a case at a point of time. For example, for the first case, there
are the following states: {}, {DES}, {DES,CODE}, {DES, TEST,CODE}
and {DES,TEST,CODE, REV}. There are transitions between all the subse-
quent pairs of states, transitions are labelled with the names of produced doc-
uments. Using the Petri net synthesis algorithms, we generate a Petri net from
the given TS, see Fig. 4. This Petri net has the same behaviour as the TS, events
of the TS correspond to the transitions of the PN.

Cnfoss

{DES, TEST,CODE} {DES,VER,CODE}
REV REV
{DES, TEST,CODE,REV} {DES,VER,CODE,REV}

Fig. 3. Generated Transition System Fig. 4. Synthesized Petri Net

In general, we can construct transition systems in different ways by means of
defining a state not only as a set, but as a multi-set or a sequence of documents
and look not only at the complete history, but also at the complete future or
partial future and history of a case. Next, we can modify the constucted TS
using some strategy. The result of the modification with the “Extend Strategy”
is shown in Fig. 5. Basically, this strategy makes transitions between two states,
which were created from different traces but which can be subsequent because
there is a single document which can be produced to reach one state from the
other. The motivation for the “Extend” strategy is that it in many cases it

is unrealistic that all possible interleavings of activities are actually present in
the log. As a result, we generated an additional transition VER from state
{DES,CODE} to state {DES,VER,CODE}. A Petri net corresponding to
this TS is shown in Fig. 6. This Petri net is more general then the first one, it
allows an additional trace, namely (DES,CODE,VER, REV).

Fig. 5. Extended Transition System Fig. 6. Synthesized PN for Extended TS

The first ideas of the generation and synthesis approach were presented in
our previous paper [31], then the algorithms were significantly improved and suc-
cessfully implemented in the context of ProM; the tool Petrify [16] is used in the
synthesis phase. The ProM tool includes implementations of different strategies,
which allow us to abstract from the information given in the log and to build
understandable and analyzable process models. This approach overcomes many
limitations of the traditional process mining approaches. It can deal with com-
plicated process constructs (for example, non-free-choice constructs and loops)
and duplicates (documents of different types with the same names); it can over-
come overfitting (generated model allows only for the exact behaviour seen in
the log) and underfitting (model overgeneralizes the things seen in the log) and
it produces consistent models. However, by now, this approach can hardly deal
with noise (incorrectly logged events and exceptions); so, the other approaches
that treat this problem, are presented in the next Section.

Other Approaches for Control Flow Mining The generation and synthesis
approach introduced in the previous section is particularly suitable for the situ-
ation at hand, as it can relate the availability of documents in the system to the
states of the development process. In the process mining domain a number of
further algorithms for control flow mining have already been developed, which
have different characteristics from the previously introduced approach; all these
algorithms can be also applied for mining the software processes.

The Alpha algorithm [8] can also derive a Petri net model from an event log,
however it is based on analyzing the immediate successor relation between event
types, i.e. documents. Another algorithm, the Multi-phase approach [20], creates
Event-driven Process Chain (EPC) models from a log, while it first generates
a model for each process instance and later aggregates these to a global model.
The Multi-phase approach is very robust, as it can map fuzzy branch and join
situations in a process model (i.e., where it is hard to find out whether the branch
or join has AND- or XOR~semantics) to the OR-connector of the EPC language.

Both the Alpha and the Multi-phase algorithms share the generation and
synthesis approach’s precision, i.e. the generated model accurately reflects all
ordering relations discovered in the log. While this property is useful to determine
what exactly has happened in the development process, there are also situations
where one wants to abstract from infrequent behavior, i.e. noise. The ability to
abstract from noise is particularly required in the context of large and semi-
structured processes, which are characterized by a large number of involved
tasks with a high ratio of ordering relations between them. Mining logs from
such processes with precise algorithms usually results in “spaghetti-like” process
models, which are hard to derive high-level information from.

While sophisticated filtering of logs can remove noise partially, there are also
process mining algorithms which are designed to be more robust in the presence
of noise. The Heuristics Miner [39] can do so by employing a sophisticated heuris-
tics which, based on the frequency of discovered ordering relations, attempts to
discard exceptional behavior. Another approach in this direction is the Genetic
Miner [4]. Tt uses genetic algorithms to develop the process model in an evo-
lutionary manner, which enables it to also discover e.g. long-term dependencies
within a process. Specifically designed mutation operators and fitness metrics
enable the Genetic Miner to gradually approach the optimal process model.

4.3 Mining other perspectives

The control flow, i.e. the ordering of tasks within a process, is only one perspective
addressed in this paper. Additional information, such as the timestamp of an
event or its originator (i.e., the person having triggered its occurrence) can be
used to derive high-level information about the software process also in other
perspectives.

Resource Perspective One perspective different from control flow is the re-
source perspective, which looks at the set of people involved in the process, and
their relationships. The Social Network Miner [5] for example can generate the
social network of the organization, which may highlight different relationships
between the persons involved in the process. One example of a social network
represents the handover of work between the resources involved in the process.
The resources are symbolized by nodes, while each arc represents that at least
once a work was passed in that direction, i.e. these persons subsequently worked

(designer) (developer) (qaengineer) (manager)

)
K

[DES J [CODE] [TESTJ VER J [REV }

Fig. 7. Example of an organizational structure

on the same project. There are also social networks highlighting other relation-
ships, e.g. subcontracting, where an event from one person is encompassed by
two events from another person.

The Organizational Miner also addresses the resource perspective, attempt-
ing to cluster resources which perform similar tasks into roles. An example of
mining this organizational structure from the log in Table 2 is shown in Fig-
ure 7. Based on the overlap of subsets of resources having executed each task,
four roles have been derived. A role can both be required for a number of different
tasks (e.g., “Role C” can both handle tasks “TEST” and “VER”), and resources
may occupy several roles (e.g., the resource “designer” has both “Role A” and
“Role B”. This functionality can be very beneficial in a software development
process, both for verification and analysis of the organizational structure. Mis-
matches between discovered and assigned roles can pinpoint deficiencies in either
the process definition or the organization itself.

Performance Perspective Mining algorithms addressing the performance
perspective mainly make use of the timestamp attribute of events. From the
combination of a (mined or predefined) process model and a timed event log
they can give detailed information about performance deficiencies, and their lo-
cation in the process model. If, for example, the test phase is highlighted as the
point in the process where most time is spent, it may be helpful to assign more
staff to this task.

Information Perspective As it has already been mentioned in Section 4.1, it
is helpful to abstract from low-level events in the log. However, there may also
be situations where the exact composition of higher-level modules corresponding
to development phases is not known precisely. The Activity Miner [25] addresses
this problem, which is common due to the low-level nature of most logs. It
can derive high-level activities from a log by clustering similar sets of low-level
events that are found to occur together frequently. These high-level clusters, or
patterns, can be helpful for unveiling hidden dependencies between documents,
or for a re-structurization of the document repository layout.

4.4 Process Analysis and Verification

The mining approaches described in the previous sections mainly serve the pur-
pose to extract high-level information from a process enactment log. This is a
tremendously helpful tool for managers and system administrators, who want
to get an overview of how the process is executed, and for monitoring progress.
However, in many situations it is not so interesting how exactly the process is
executed, but rather if this execution is correct.

To answer this question, there exists a set of analysis and verification methods
in the process mining domain. One of these techniques is Conformance Check-
ing [35], which takes an enactment log and an associated process model, e.g. a
Petri net, as input. The goal is to analyze the extent to which the process ex-
ecution, as recorded in the log, corresponds to the given process model. Also,
conformance checking can point out the parts of the process where the log does
not comply, and the process instances which are deviant. This technique can
be used both for process verification (i.e., is the actual execution compliant to
my defined development process?) and for process analysis (i.e., where does my
organization fail to comply with the defined process?). In the context of strictly
defined development processes, e.g. in CMMI or government-sponsored devel-
opment, the hard proof of compliance to these processes can be a competitive
advantage.

Another technique to this end is LTL Checking [3], which analyzes the log
for compliance with specific constraints, where the latter are specified by means
of linear-temporal logic (LTL) formulas. An example of such a constraing is: “A
testing activity must be performed only after the design activity is finished”.
LTL checking can be used to verify these constraints in a log, and to pinpoint
the specific cases which do not comply. Regarding the example log in Table 2,
all three cases satisfy the above constraint. In contrast to conformance checking,
LTL checking does not assume the existence of a fully defined development pro-
cess. Therefore, it can be used to successively introduce, and check for, isolated
corporate guidelines or best development practices.

While the ProM framework supports all of the above process mining tech-
niques, it also features techniques for process model analysis and verification in
the absence of a log. Advanced process model analyzers, such as Woflan [38],
which is also integrated in ProM, can check e.g. a Petri net model for deadlocks
(i.e., potential situations in which execution will be stuck), or verify that there
exists a valid place invariant (i.e., all process executions will complete properly
with no enabled task left behind). For the software process models shown in
Figure 4 and Figure 6, Woflan detected no deadlocks or other anomalies. Pro-
cess designers find these automated tools valuable for ensuring that a defined
development process will not run into problems which are hard to resolve later
on.

4.5 ProM and ProMimport Tools

The ideas presented in this paper have been implemented in the context of
ProM. ProM serves as a testbed for our process mining research [21] and can be

downloaded from www.processmining.org. Starting point for ProM is the MXML
format. This is a vendor-independent format to store event logs. Information as
shown earlier in tabular form can be stored in MXML. One MXML file can store
information about multiple processes. Per process events related to particular
process instances (often called cases) are stored. Each event refers to an activity.
In the context of this paper documents are mapped onto activities. Events can
also have additional information such as the transaction type (start, complete,
etc.), the originator (who executed the activity; in this paper often referred to
as the “author”), timestamps (when did the event occur), and arbitrary data
(attribute-value pairs).

The ProMImport Framework allows developers to quickly implement plug-
ins that can be used to extract information from a variety of systems and convert
it into the MXML format (cf. promimport.sourceforge.net). There are standard
import plug-ins for a wide variety of systems, e.g., workflow management sys-
tems like Staffware, case handling systems like FLOWer, ERP components like
PeopleSoft Financials, simulation tools like ARIS and CPN Tools, middleware
systems like WebSphere, BI tools like ARIS PPM, etc. Moreover, it is been
used to develop many organization/system-specific conversions (e.g., hospitals,
banks, governments, etc.). As will be shown later, the ProMImport Framework
can also be used to extract event logs from systems such as Subversion and CVS
(Concurrent Versions System).

Once the logs are converted to MXML, ProM can be used to extract a variety
of models from these logs. ProM provides an environment to easily add so-
called “plug-ins” that implement a specific mining approach. Although the most
interesting plugins in the context of this paper are the mining plugins, it is
important to note that there are in total five types of plug-ins:

Mining plug-ins which implement some mining algorithm, e.g., mining algo-
rithms that construct a Petri net based on some event log.

Export plug-ins which implement some “save as” functionality for some ob-
jects (such as graphs). For example, there are plug-ins to save EPCs, Petri
nets, spreadsheets, etc.

Import plug-ins which implement an “open” functionality for exported ob-
jects, e.g., load instance-EPCs from ARIS PPM.

Analysis plug-ins which typically implement some property analysis on some
mining result. For example, for Petri nets there is a plug-in which constructs
place invariants, transition invariants, and a coverability graph.

Conversion plug-ins which implement conversions between different data for-
mats, e.g., from EPCs to Petri nets and from Petri nets to YAWL and BPEL.

The next section will illustrate the application of some of these plug-ins. How-
ever, since there are currently more than 140 plug-ins it is impossible to give
a representative overview. One of these more than 140 plug-ins is the mining
plug-in that generates the transition system that can be used to build a Petri
net model. Note that for this particular approach ProM calls Petrify [17] to
synthesize the Petri net.

5 Evaluation and Applications

As an evaluation example, we decided to take the ArgoUML project. ArgoUML
is a popular open-source UML modeling tool. It is an open source development
project (BSD license), which provides access to its source files maintained with
the Subversion SCM system. ArgoUML is organized as a set of subprojects with
separate members lists and goals, but with the same file organization and the
same development tools. Thus, different subprojects use the same naming con-
ventions and development rules, it significantly simplifies the work of process
mining algorithms.

We decided to take a look at five subprojects, where the ArgoUML support
for the following languages is developed: C++, C#, IDL, PH P and Ruby. Thus,
all these projects correspond to cases (process instances) and the overall mined
model can be called “the process model for developing language support for
ArgoUML”. So, our goal is: (1) to derive a formal plausible software development
process model (control-flow perspective) from the document logs; (2) to enhance
the resulting model with the performance and the organization perspectives; (3)
to apply the process analysis and verification techniques.

First, using the svn log utility provided by Subversion, we generated logs
for all the five subprojects. Then, using the ProMImport tool, the logs were
converted to the MXML format, which is accepted by the ProM tool; all the
logs were merged to a single log containing one process with five process instances
containing about 400 commits. A small fragment of the log is shown in Fig. 8.

<AuditTrailEntry>
<WorkflowModelElement>/trunk/www/index.html</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-06-02T19:49:16.000+01:00</Timestamp>
<Originator>tfmorris</Originator>

</AuditTrailEntry>

<AuditTrailEntry>
<WorkflowModelElement>/trunk/src/org/argouml/language/cpp

/ui/SettingsTabCpp.java</WorkflowModelElement>

<EventType>complete</EventType>
<Timestamp>2006-06-02T20:28:40.000+01:00</Timestamp>
<Originator>mvw</Originator>

</AuditTrailEntry>

Fig. 8. A log fragment.

The resulting log contains project specific paths and different commits, which
are not relevant for the software process. Therefore, using the remap filter, we
replaced project specific paths with the abstract names. In our example, all the
commited documents (files) containing “/src/” in their paths with “.java” at the
end were mapped to “SRC”, all the “readme.*” files — to “README”, all the files

=

README (complete)

WA (complete) CONFIG fcomplete)]_—O_-.[SRC (complete)

&_ BUILDER {complets
| I ———

TESTS (complete)

Fig. 9. Petri Net for the ArgoUML Project

in “/tests/” —to “TESTS”, the files in “/www/” — to “WWW?” “build.bat” — to
“BUILDER” and all the files, which names start with “.” — to “CONFIG”; the
other commits were ignored. It should be noted that this mapping corresponds
to the naming conventions of the ArgoUML project. Thus, at the end we received
an abstract log, which can be processed by our algorithms.

After executing the algorithms of the generation and synthesis approach, we
obtained the Petri net shown in Fig. 9. Here, for the sake of readability, we
show this simplified Petri net without loops; we use to derive acyclic processes
by means of applying the “Kill Loops” modification strategy to the transition
system and synthesizing a Petri net from it. Thus, the Petri net focuses on the
starting events, i.e. when source code development was started, when testing
was started. People use to start with building web sites or editing readme files
and builders, then they write code and then, they test it, sometimes builder is
changed after writing code. Now, since we have a model, it can be extended for
dealing with time and for representing the statistical data about the duration of
tasks.

0.4

nplete)

[Coratames |—-@—"

Fig. 10. Performance Analysis for the ArgoUML Project

The Petri net model of the development process can now be used for enhanced
analysis within the ProM framework. Figure 10 shows the result of a performance
analysis based on the mined model and the log. The states, i.e. places, have
been colored according to the time which is spent in them while executing the

e

process. Also, multiple arcs originating from the same place (i.e., choices) have
been annotated with their respective probability (i.e., the fraction of cases for
which this path was taken).

Fig. 11. Conformance Analysis for the ArgoUML Project

Further, a conformance analysis can be performed using the Petri net model
and the associated log. Figure 11 shows the path coverage analysis of the con-
formance checker. All activities that have been executed in a specific case (or,
set of cases) are decorated with a bold border, and arcs are annotated with the
frequency they have been followed in the case. In this example, it can be seen
that “README” was not executed for the “CPP” case, i.e. the C++ language
support team has not created a README file.

SRC

complete Originator = euluis

2006-08-18 01:43:24.000 +0200

TESTS

complete Originator = euluis
2006-08-18 01:43:24.000 +0200

Fig. 12. LTL Analysis for the ArgoUML Project

One constraint in a software development project could be, that developers
working on the source code should not write tests as well. Figure 12 shows the
result of checking a corresponding LTL formula on the ArgoUML log. In the
C++ language support case, which is shown in Figure 12, both source code
and tests have been submitted by the developer “euluis”, thereby violating this
constraint.

For determining the social network of a development process it is preferable to
use the original log, i.e. before it has been abstracted like explained in Section 4.1.
The reason for that is, that it is also interesting when people collaborate within a
certain part of the project (e.g., writing source code), while one wants to abstract
from these activities on the control flow level. Figure 13 illustrates the hand-over

bobtarling

Fig. 13. Social Network for the ArgoUML Project

of work between ArgoUML developers. It shows that some developers are only
involved in specific phases of the project (e.g., “bobtarling” appears to only work
at the end of projects), while others (e.g., “tfmorris”) have a more central and
connected position, meaning they perform tasks all over the process. Based on
the nature of the project at hand one may prefer different collaboration patterns,
which can be checked conveniently in a mined social network like this.

Thus, in this section, we presented a small handy example of the real software
project, where a subset of the big set of process mining and analysis techniques
supported by ProM was applied.

6 Conclusion

In this paper, we have discussed some new algorithms for mining software and
systems engineering processes from the information that is available in Software
Configuration Management Systems. These algorithms are included in the ProM
framework, which has interfaces to a variety of document management systems.
Therefore, ProM is now an effective tool for software process mining.

For evaluation purposes, we have mined the software processes of ArgoUML
since this is a larger project where the repository is freely available. This shows
that we can obtain the process models for realistic software projects. Moreover,
we have shown that ProM could be used for analysing and verifying some prop-
erties of these processes.

Acknowledgements

This research is supported by EIT, NWO, the University of Paderborn and
International Graduate School of Dynamic Intelligent Systems, and the Tech-
nology Foundation STW, applied science division of NWO and the technology
programme of the Dutch Ministry of Economic Affairs.

References

1. MSR 200/: International Workshop on Mining Software Repositories, Washington,
DC, USA, 2004. IEEE Computer Society.

10.

11.

12.

13.

14.

15.

16.

17.

18.

. MSR 2005 International Workshop on Mining Software Repositories, New York,

NY, USA, 2005. ACM Press.

W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process Mining and
Verification of Properties: An Approach based on Temporal Logic. BETA Working
Paper Series, WP 136, Eindhoven University of Technology, Eindhoven, 2005.
W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Genetic
Process Mining. In G. Ciardo and P. Darondeau, editors, Applications and Theory
of Petri Nets 2005, volume 3536, pages 48-69, 2005.

W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social Networks
from Event Logs. Computer Supported Cooperative work, 14(6):549-593, 2005.
W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237-267, 2003.

W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special
Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers,
Amsterdam, 2004.

W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEFEE Transactions on Knowledge
and Data Engineering, 16(9):1128-1142, 2004.

R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sizth International Conference on Extending Database Technology,
pages 469-483, 1998.

Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In
Philip S. Yu and Arbee S. P. Chen, editors, Eleventh International Conference
on Data Engineering, pages 3—14, Taipei, Taiwan, 1995. IEEE Computer Society
Press.

J.E. Cook, Z. Du, C. Liu, and A.L. Wolf. Discovering models of behavior for
concurrent workflows. Computers in Industry, 53(3):297-319, 2004.

J.E. Cook, C. He, and C. Ma. Measuring Behavioral Correspondence to a Timed
Concurrent Model. In Proceedings of the 2001 International Conference on Soft-
ware Mainenance, pages 332-341, 2001.

J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215-249, 1998.

J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In Proceedings
of the Sixth International Symposium on the Foundations of Software Engineering
(FSE-6), pages 35-45, 1998.

J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring
the Correspondence of a Process to a Model. ACM Transactions on Software
Engineering and Methodology, 8(2):147-176, 1999.

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Petrify: a tool for manipulating concurrent specifications and synthesis of asyn-
chronous controllers. IEICE Transactions on Information and Systems, E80-
D(3):315-325, 1997.

Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alexandre Yakovlev.
Deriving Petri nets from finite transition systems. IEEE Transactions on Comput-
ers, 47(8):859-882, 1998.

Davor Cubranic and Gail C. Murphy. Hipikat: recommending pertinent software
development artifacts. In ICSE ’03: Proceedings of the 25th International Confer-
ence on Software Engineering, pages 408—418, Washington, DC, USA, 2003. IEEE
Computer Society.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Communication of
the ACM, 35(9):75-90, 1992.

B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Building
Instance Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.W. Ling, editors,
International Conference on Conceptual Modeling (ER 2004), volume 3288, pages
362-376, 2004.

B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters,
and W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining
Tool Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of
Petri Nets 2005, volume 3536, pages 444-454, 2005.

W. Droschel and H. Wiemers. Das V-Modell 97, Der Standard fir die Entwicklung
von IT-Systemen mit Anleitung fir den Praxiseinsatz. Oldenbourg, 2000.

Peter H. Feiler and Watts S. Humphrey. Software process development and en-
actment: Concepts and definitions. Technical Report CMU/SEI-92-TR-004, SEI
Carnegie Mellon, 1993.

Volker Gruhn. Process-centered software engineering environments - a brief history
and future challenges, 2002.

C.W. Giinther and W.M.P. van der Aalst. Mining Activity Clusters from Low-
level Event Logs. BETA Working Paper Series, WP 165, Eindhoven University of
Technology, Eindhoven, 2006.

Federico Tannacci. Coordination Processes in Open Source Software Development:
The Linux Case Study. http://opensource.mit.edu/papers/iannacci3.pdf, apr 2005.
Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified software develop-
ment process. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

Ekkart Kindler, Vladimir Rubin, and Wilhelm Schéfer. Incremental Workflow min-
ing based on Document Versioning Information. In Mingshu Li, Barry Boehm, and
Leon J. Osterweil, editors, Proc. of the Software Process Workshop 2005, Beijing,
China, volume 3840 of LNCS, pages 287-301. Springer, May 2005.

Ekkart Kindler, Vladimir Rubin, and Wilhelm Schéfer. Activity mining for discov-
ering software process models. In B. Biel, M. Book, and V. Gruhn, editors, Proc.
of the Software Engineering 2006 Conference, Leipzig, Germany, volume P-79 of
LNI, pages 175-180. Gesellschaft fiir Informatik, March 2006.

Ekkart Kindler, Vladimir Rubin, and Wilhelm Schéfer. Incremental Worklfow
Mining for Process Flexibility. In Proc. of the Seventh CAiSE’06 Workshop on
Business Process Modeling, Development, and Support (BPMDS’06), Luzembourg,
jun 2006.

Ekkart Kindler, Vladimir Rubin, and Wilhelm Schéfer. Process Mining and Petri
Net Synthesis. In Johann Eder and Schahram Dustdar, editors, Business Process
Management Workshops, volume 4103 of LNCS. Springer, 2006.

Keir Mierle, Kevin Laven, Sam Roweis, and Greg Wilson. Mining student cvs
repositories for performance indicators. In MSR ’05: Proceedings of the 2005 in-
ternational workshop on Mining software repositories, pages 1-5, New York, NY,
USA, 2005. ACM Press.

A. Mockus, R.T. Fielding, and J. Herbsleb. Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Trans. Software Engineering
and Methodology, 11(3):309 — 246, 2002.

L Osterweil. Software processes are software too. In Proceedings of the 9th In-
ternational Conference on Software Engineering, pages 2—13, Los Alamitos, CA,
USA, 1987. IEEE Computer Society Press.

35

36.

37.

38.

39.

40.

A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812,
pages 163-176, 2006.

Robert J. Sandusky, Les Gasser, and Gabriel Ripoche. Bug Report Networks:
Varieties, Strategies, and Impacts in a F/OSS Development Community. In MSR
2004: International Workshop on Mining Software Repositories, 2004.

Walt Scacchi. Understanding the requirements for developing open source software
systems. IEE Proceedings - Software, 149(1):24-39, 2002.

H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A Petri-net-based Work-
flow Diagnosis Tool. In M. Nielsen and D. Simpson, editors, Application and Theory
of Petri Nets 2000, volume 1825, pages 475-484, 2000.

A.J. M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151-162, 2003.

Thomas Zimmermann and Peter Weissgerber. Preprocessing cvs data for fine-
grained analysis. In Proc. 1st International Workshop on Mining Software Repos-
itories (MSR), may 2004.

