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Abstract. When a workflow contains a large number of tasks and involves com-
plex control flow dependencies, verification can take too much time or it may
even be impossible. Reduction rules can be used to abstract from certain transi-
tions and places in a large net and thus could cut down the size of the net used
for verification. Petri nets have been proposed to model and analyse workflows
and Petri nets reduction rules have been used for efficient verification of various
properties of workflows, such as liveness and boundedness. Reset nets are Petri
nets with reset arcs, which can remove tokens from places when a transition fires.
The nature of reset arcs closely relates to the cancellation behaviour in work-
flows. As a result, reset nets have been proposed to formally represent workflows
with cancellation behaviour, which is not easily modelled in ordinary Petri nets.
Even though reduction rules exist for Petri nets, the nature of reset arcs could
invalidate the transformation rules applicable to Petri nets. This motivated us to
consider possible reduction rules for reset nets. In this paper, we propose a num-
ber of reduction rules for Reset Workflow Nets (RWF-nets) that are soundness
preserving. These reduction rules are based on reduction rules available for Petri
nets [19] and we present the necessary conditions under which these rules hold
in the context of reset nets.

Keywords: Petri nets with reset arcs, reset nets, reduction rules, workflow verifi-
cation, soundness property.

1 Introduction

Some have advocated the use of Petri nets for the specification of workflows among
others due to the formal foundation, their graphical nature and the presence of analysis
techniques [4]. Reduction rules have also be suggested to be used together with Petri
nets for verification of workflows [25]. There exists a body of work concerning the
verification of workflow specifications expressed as Petri nets or expressed in languages
for which mappings to Petri nets have been defined [2, 3, 25]. In either case, verification
boils down to examining certain properties of Petri nets.

Unfortunately, these results are not transferable to situations where languages are
involved that use concepts not easily expressed through Petri nets. One such concept
that is difficult to express in terms of Petri nets is cancellation region€gjcellation



is used to capture the interference of one task in the execution of others. If a task is
within the cancellation region of another task, it may be prevented from being started
or its execution may be terminated. For example, you might want to simply cancel
other order processing tasks if a customer’s credit card payment did not go though.
Reset nets are Petri nets with reset arcs, which can remove tokens from places when a
transition fires. The nature of reset arcs closely relates to the cancellation behaviour in
workflows. As a result, reset nets have been proposed to formally represent workflows
with cancellation behaviour [28].This approach allows us to leverage existing literature
and techniques in the area of Petri nets and reset nets in particular [8,11, 14-18].

We are interested in determining whether a workflow possesses the following desir-
able properties. Firstly, it is important to know that a workflow, when started, can com-
plete. Secondly, it should never have tasks still running when completion is signalled.
Thirdly, the workflow should not contain tasks that can never be executed. These re-
quirements encompass theundness propertyf a workflow specification as expressed
in [4]. In [30], we have proposed a new verification approach for the soundness property
in workflows with cancellation and OR-joins using Reset Workflow Nets (RWF-nets).
An RWF-net is a reset net with three structural restrictions: there is exactly one source
node, one sink node and every node in the graph is on a directed path from the source
node to the sink node. This is to ensure that every workflow represented by an RWF-net
will have a unique start place, a unique end place and it is possible to go from the start
place to the end place by following a series of transitions. Using state-based analysis,
we have shown that it is possible to decide the soundness property of workflows with
cancellation behaviour using reset nets. The drawback of using reset nets, however, is
that there are no reduction rules defined for reset nets. As a result, the analysis is time
consuming for large models. Even though reduction rules exist for Petri nets, the nature
of reset arcs in an RWF-net could invalidate the transformation rules applicable to Petri
nets. For example, itis possible that an incorrect net that does not satisfy proper comple-
tion criterion (i.e., tokens can be left in the net when it reaches the end) becomes sound
when there is a reset arc to remove the leftover token before completion. Therefore,
we propose extension to the requirements for Petri net reduction rules with additional
restrictions with respect to reset arcs.

In this paper, we propose a number of reduction rules for Reset Workflow Nets
(RWF-nets) that are soundness preservifidiese reduction rules for RWF-nets are
inspired by the reduction rules for Petri nets [19] and free-choice Petri nets [12]. We
present the necessary conditions under which these rules hold in the context of re-
set workflow nets. The organisation of the paper is as follows. Section 2 provides the
formal foundation by introducing reset nets and Reset Workflow Nets(RWF-nets). Sec-
tion 3 describes a set of reduction rules for RWF-nets together with associated proofs.
Section 4 discusses the related work and section 5 concludes the paper.

! The bulk of this work was done while visiting Eindhoven University of Technology in close
collaboration with Dr. Eric Verbeek and Professor Wil van der Aalst.



2 Preliminaries

2.1 Petri nets and Reset nets

Petri nets were originally introduced by Carl Adam Petri [21] and since then, they are
widely used as mathematical models of concurrent systems for various domains [20,
12]. Numerous analysis techniques exist to determine various properties of Petri nets
and its subclasses [20, 12, 19, 22, 23].

Definition 1 (Petri net [21, 20]). A Petri net is a tuple £, T, F') where P is a (non-
empty finite) set of placeg; is a set of transitonsPNT = gandF C (P x T) U
(T x P) is the set of arcs.

A reset net is a Petri net with specialset arcsthat can clear the tokens in selected
places. Graphically, reset arcs are modelled as doubled-headed arrows. Figure 1 shows
a transitiont with all possible combinations of input, output and reset arcs. The nature

of reset arcs matches closely with the concept of cancellation in workflow modelling
and reset nets are proposed as a formalism for modelling workflows with cancellation.

Definition 2 (Reset net [14]).A reset net is a tupléP, T, F, R) where(P, T, F) is a
Petri net andR : T — P(P) provides the reset places for the transitiéns
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Fig. 1. An example reset net

In the remainder of the paper, when we use the funchign, y), it evaluates to 1 if
(z,y) € Fand0if(z,y) ¢ F. We write F* for the transitive closure of the flow
relation I’ and F'* for the reflexive transitive closure &. R~! is the (straightforward)
inverse function of? where R~ € P — P(T). The notationR(t) for a transitiont

2WherePis a power set of P, i.eX € Pifand only if X C P.



returns the (possibly empty) set of places that it resets. We also ifigefor a place
p, which returns the set of transitions that can reset

Let N be areset netande (P UT), we usesz andxe to denote the set of inputs
and outputs. If the net involved cannot be understood from the context, we explicitly
include it in the notation and we writez andz . A marking is denoted by and, just
as with ordinary Petri nets, it can be interpreted as a vector, function, and multiset over
the set of place®. M (p) returns the number of tokens in a plac& p € dom (M)
and zero otherwise. We can use notations such/as M’, M + M’, andM =M’
M < M'iff VpepM(p) < M'(p). M+ M'"andM = M' are multisets such thé,c p:
(M + M")(p) = M(p)+ M'(p) and(M = M")(p) = M(p)-=M'(p) 3. We represent a
multiset by simply enumerating the elements, €@ 3b+ ¢ is the multiset containing
two a’s, threeb’s and onec. If X is a set ovel, it could also be interpreted as a bag
which assigns to each element a weight of 1.

The notatiorM (V) is used to represent possible markings of a reseihet

Definition 3 (M(N)). Let N = (P, T, F, R) be areset net, then W) = P — Nis
the set of possible markings.

A transition isenabledwhen there are enough tokens in its input places. Note that
reset arcs do not change the requirements of enabling a transition.

Definition 4 (Enabling rule). Let N be aresetnet, € T',andM € M(N). Transition
t is enabled at\/, denoted ad\/[t), if and only ifvVp € ot : M(p) > 1.

The concept of firing a transitianin a netV is formally defined in Definition 5 and
denoted as/ ~> M’. If there can be no confusion regarding the net, the expression is
abbreviated a3/ - M’ and if the transition is not relevant, it is written && — M.

Definition 5 (Forward firing). Let N = (P, T, F,R) be a reset netf € T and
M, M’ € M(N).

M %M < M)A
/ M(p) — F(p,t) + F(t,p) if peP\R()
M (p):{F(tZ,)p) g Y ieR(t).

It is possible to fire a sequence of transitions from a given marking in a reset net
resulting in a new marking using the forward firing rule defined above. This sequence
of transitions is represented as an occurrence sequence.

Definition 6 (Occurrence sequencel.etN = (P, T, F, R) be aresetnetand/, M1, ..., M,, €
M(N). If M 2 M, 2 ... 5 M, are firing occurrences thea = t15...t,, is an oc-
currence sequence leading frah to M,, and it is written asM = M,,.

We now define the concepts of reachability and coverability of markings from a
given marking in a reset net. A markidg’ is reachable from another markidg in a
reset net, if there is an occurrence sequence leading fiotm M.

3 For any natural numbets b: a—b is defined as max — b, 0).



Definition 7 (Reachability).LetN = (P, T, F, R) be aresetnetand/, M’ € M(N).

M is reachable in N from/, denotedV/ —~ M, if there exists an occurrence sequence
o such thatd = M'.

Thereachability seis the minimal set of markings that can be reached from a given
marking M in a reset net after firing all possible occurrence sequences.

Definition 8 (Reachability set).LetN = (P, T, F, R) be areset netand/ € M(N).
The reachability set of the marked ré{, M), denotedV[M ), is the minimal set that
satisfies the following conditions:

1. M € N[M) and
2. if transitiont € T and markingsi, Ms € M(N) exist such thal\l; € N[M)

and M, 5" Ms, thenM, € N[M).

Definition 9 (Directed labelled graph).A directed labelled graplt: = (V, E) over
label setl consists of a set of nodésand a set of labelled edgds C V x £ x V.

Thereachability graphis a directed labelled graph where the elements of the reach-
ability set form the nodes and the tuple consisting of a source marking that enables a
transition, the transition and the target marking that is reached by firing the transition
form the edges. The graph can be used to determine the possible states of a reset net
from an initial marking.

Definition 10 (Reachability graph). Let N = (P, T, F, R) be a reset net and/
M(N). The directed labelled grap@ = (V, E) with label setC = T is the reachability
graph of the marked nétv, M) iff

1.V =N[M)and
2. for any transitiont € T and markingsM;, Ms € M(N) : M, 5 M, &
(M17t7M2) ekb.

Liveness, boundedness and safeness are defined as in previous work [20, 19]. Live-
ness, boundedness and safeness can be determined from the reachability graph.

Definition 11 (Liveness, boundedness, safeness [20, 1#])transition is live if it can

be enabled from every reachable marking. A place is safe if it never contains more than
one token at the same time. A place is k-bounded if it will never contain more:;than
tokens. A place is bounded if itisbounded for somé.

If all places in a reset net are bounded, the reset net is also bounded and hence, it is
possible to generate a finite reachability set. If a place is unbounded, the reachability set
contains an infinite number of states(infinite state spageln such cases, reachability
of a marking cannot be determined but coverability can be determined. Coverability
is a relaxed notion that can handle unbounded behaviour. A mafing said to be
coverablefrom another marking\/; in a reset net if there is a reachable marking
from M, such thatM’ is bigger than or equal td/,.

Definition 12 (Coverability). Let N = (P, T, F, R) be a reset net and/,, My €
M(N). M, is coverable fromM/; in N, if there exists a marking/’ such thatM’ €
N[M1> and M’ > M.



We conclude this section with the notionB&ckward firingthat is used to generate
coverable markings for a reset net by firing transitions backwards.

Definition 13 (Backward firing [29]). Let (P, T, F, R) be a reset net and{, M’ €
M(N). M’ --»t M iff it is possible to fire a transitiont backwards starting froni/
and resulting inM”’.

M’ —-»t M < MIR(t)] < t o [R(t)]A

, (M(p)~F(t,p))+ F(p,t) fif € P\ R(¥)
Wi = { gy T e R

For places that are not reset places, the number of tokehf its determined by the
number of tokens ifd/ for p and the production and consumption of tokens. If a place is
an output place afand not a reset place, one token is removed fidip) if M (p) > 0.

If a place is an input place dgfand not a reset place, one token is addedift). For
any reset place, M (p) < F(t,p) because it is emptied when firing and thE(¥, p)
tokens are added. We do not requivE(p) = F(t,p) for a reset place because the
aim is coverability and not reachabilityi/’, i.e., the marking before (forward) firing

t, shouldat leastcontain theminimal number of tokens required for enablimgand
resulting in a marking oéit least)M . Therefore, onlyF'(p, t) tokens are assumed to be
present in a reset plage

2.2 Reset WorkFlow nets (RWF-nets)

This section discusses the formalisation of workflow models using Petri nets. A WF-
net is defined as a Petri net with the following structural restrictions. There is exactly
one begin place and exactly one end place. Moreover, every node in the graph is on a
directed path from the begin place to the end place.

Definition 14 (WF-net [3,25]). Let N = (P, T, F) be a Petri net. The neV is a
WEF-net iff the following three conditions hold:

1. there exists exactly onec P such thatei = &, and
2. there exists exactly onec P such thabe = &, and
3. foralln e PUT: (i,n) € F* and(n,0) € F*.

The notion of a Reset WorkFlow net (RWF-net) is introduced to represent work-
flows with cancellation features. We define Reset WorkFlow nets (RWF-nets) which
are reset nets with the same structural restrictions as WF-nets.

Definition 15 (RWF-net [27]). Let N = (P, T, F, R) be a reset net. The né{ is an
RWF-netiff(P, T, F) is a WF-net.

In an RWF-net, there is an input placand an output placeand an initial marking
M; and an end markind/, is defined as follows:

Definition 16 (Initial marking and End marking). LetN = (P, T, F, R) be an RWF-
net and;, o be the input and output places of the net. The initial markinyy @ denoted
as M; and it represents a marking where there is a token in the input plage.,
M; = 7). Similarly, the end marking a¥ is denoted ad/, and it represents a marking
where that is a token in the output placéi.e., M, = o).



A WF-net is an RWF-net iff? is empty (for allt € T': R(t) = @). Thus(P, T, F)
suffices (we may omik).

The soundnesglefinition for an RWF-net is based on the soundness definition
from [7] for WF-nets. An RWF-net is sound if and only if it satisfies the three crite-
ria: option to complete, proper completion and no dead transitions.

Definition 17 (Soundness [27])LetN = (P, T, F, R) be an RWF-net and/;, M, be
the initial and end markingsV is sound iff:

1. option to complete: for every marking reachable from\/;, there exists an occur-
rence sequence leading frold to M,, i.e., forall M € N[M;) : M, € N[M),
and

2. proper completion: the marking/, is the only marking reachable frof¥; with at
least one token in place i.e, forall M € N[M;) : M > M, = M = M,, and

3. no dead transitions: for every transitiane 7', there is a markingV/ reachable
from M; such thatM[t), i.e, for allt € T there exists al\/ € N[M;) such that
MTt).

3 Reduction Rules for RWF-nets

Reduction rules can be used to abstract from certain transitions and places in a large
net and thus could cut down the size of the net used for verification. As a result, the
verification process can be performed more efficiently. Furthermore, reduction rules
can highlight potential problems within a net. After applying reduction rules, a correct
net can potentially be reduced to a trivial net (just a task with one input and output
place) thus making the consequent verification process unnecessary. Those parts of the
net that cannot be reduced could indicate problems during execution and close attention
should be paid to them. When a net has reset arcs, it cannot be reduced to a trivial net
even though it is correct. This is because elements with reset arcs can be combined
but cannot be entirely abstracted. In any case, reduction rules enable verification to be
performed on a smaller net.

The style of this section is taken from [12]. For sake of clarity, we have taken a two-
step approach: first the reduction rule for WF-nets, then the extension for RWF-nets.

We will prove that reduction rules for WF-nets and RWF-nets are soundness pre-
serving. The soundness of WF-nets has been shown to correspond to boundedness and
liveness properties of the short-circuited WF-net [2]. Therefore, if a reduction rule for
a WF-net preserves boundedness and liveness, then it also preserves soundness. We
will show that a reduction rule for a WF-net is boundedness and liveness preserving
and hence, it is also soundness preserving. However, soundness of RWF-nets does not
correspond to boundedness and liveness. It is possible that an unbounded RWF-net is
sound due to the presence of reset arcs. In Figure 2, plecan unbounded place and
therefore, the net is unbounded. Transitiaesets both preceding places when it fires.

As a result, it is not possible for tokens to be left in either ¢ when the net completes.
Hence, the net is sound and we cannot prove that a reduction rule for RWF-nets pre-
serves soundness by showing that it preserves boundedness and liveness. Therefore, we
will show that reduction rules for RWF-nets preserve soundness by proving that they



preserve occurrence sequences and hence, preserve the three criteria for soundness: the
option to complete, proper completion, and no dead transitions.

O1lol® QRORORC

Fig. 2. An example of an unbounded RWF-net which is sound.

3.1 Fusion of series places

In this subsection, we first present thesion of Series Places Rule for WF-ngtssp)

and then extend the rule for RWF-nefg() by proposing additional requirements for
reset arcs. Thépgp rule is based on the Fusion of Series Places rule for Petri nets by
Murata [19]. The rule allows for the merging of two sequential placasdq with one
transitiont in between them into a single placeThe rule requires that there is only
one output arc fromp to ¢, exactly one inpup and one outpug for ¢, and that there are

no direct connections between inputaind inputs of;. The last requirement ensures
that there will only be one arc connecting inputspoin the original net to the new
placer in the reduced net (no weighted arcs). Furthermore, the rule is not applicable to
places that are either an input placar an output place of the net. See the example in
Figure 3 for an application of thérgp rule. The white parts in the figure are the parts
being considered in the reduction step. Plgeesd ¢ have been merged into a new
placer in the right net.

Definition 18 (Fusion of Series Places Rule for WF-netsprgp). Let N; and N; be
two WF-nets, wherév; = (Pl,Tl,Fl) and Ny = (PQ,TQ,FQ). (Nl,NQ) € ¢FSP

if there exists an input place € P, N P, an output place» € P, N P, two places
p,q € Py \ {i,0}, atransitiont € T}, and a place: € P, \ P; such that:

Conditions onN; :

1. ot = {p} (pis the only input of)



Pesp

Fig. 3. Reduction of a WF-net using thi-sp rule

2. te = {q} (¢ is the only output of)
3. pe = {t} (t is the only output op)
4. epneq = & (any input ofp is not an input of; and vice versa)

Construction ofV,:

5. Py= (P \ {p,q})U{r}
6. Tb =T, \ {t}

7. Fy = (Fin((Pyx To) U(Ta x P2))) U(((¥pU S )\ {t}) x {rHu({r} x¢'¢)

Theorem 1 (The ¢rgp rule is soundness preserving).et N7 and Ny be two WF-nets
such that(Ny, N3) € ¢rsp. ThenNy is soundiff Ns is sound.

Proof Thegrsp rule is boundedness and liveness preserving [19]. Soundness of a WF-
net corresponds to boundedness and liveness of the short-circuited WF-net [2]

The Fusion of Series Places Rule for RWF-ngt§sp) extends theprsp rule by
introducing reset arcs and strengthening the conditions. The rule also allows for the
merging of two sequential placgsand g with one transitior¢ in between them into
a single place. Figure 4 visualises thef, rule. The first additional requirement is
that the transitiort should not have any reset arcs. See Figure 5 for a counter example
wheret has reset arcs. Transitigrcan reset place in the left net but this behaviour
is ignored in the right net. Transition sequencgdeads to a deadlock aswill remove
a token fromu when it fires, and: does not exist in the right net. As a result, the left
net is not sound whereas the right net is. The second additional requirement is that the
two places must be reset by the same set of transitions (if anygariflq are not reset



places, then it is clear that the rule holds. If a transition resets placeust also resets
placeq as we are interested in merging these two places. See Figure 6 for a counter
example: transition sequengéyz leads to an unsound net on the left (a leftover token

in g), whereas the right net is sound. If all requirements for¢fe,. rule are satisfied,
placesp andq are merged into a new plaeewhich takes on the same reset arcpas
andg.

G eees

Fig. 4. Fusion of Series Places Rule for RWF-netfzp

Fig. 5. Transitiont resets place. (Note that the model on the left is not sound while the one on
the rightis.)

Definition 19 (Fusion of Series Places Rule for RWF-netspfy ). Let Ny and N, be
two RWF-nets, Wherﬁ/l = (Pl,Tl, Fl, Rl) andN2 = (P27T2, FQ, RQ) (N17N2) S
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Fig. 6. Placep is a reset place and plagas not a reset place. (Note that the model on the left is
not sound while the one on the right is.)

oEp if there exists an input placec P, N P, an output place € P, N P,, two places
p,q € Py \ {i,0}, atransitiont € T}, and a place: € P, \ P, such that:

Extension of theérgp rule:

1. (P, Ty, F1), (P, Ty, F»)) € ¢rsp (Note that, by definition, the o, p, ¢, t, andr
mentioned in this definition have to coincide withthe p, ¢, ¢, andr as mentioned
in the definition ofprgp.)

Conditions onR;:

2. Ry(t) = @ (t does not reset)
3. R7 (p) = Ry (q) (p andq are being reset by the same transitions)

Construction ofRs:
4. Ry ={(z,Ri(2) N P)|z € o NT1} & {(2, (R1(2) N P) U {r})|z € R (p)}*~.

Next, we show that theZ,, rule is soundness preserving. We first present two
lemmas that show that occurrence sequenceég iand N, correspond to one another.
These lemmas are then used to prove thaihig, rule preserves the three criteria of
soundness: the option to complete, proper completion, and dead transitions.

Lemma 1 (Under the ¢f rule, sequences inV; correspond to sequences itNs).
Let N; and N, be two RWF-nets such thalVy, N2) € ¢, letoy € Ty and M; €

Ni,01

M(N;) be such that =" M, andos = a(o1), wherea € T} — T3 is defined as
follows:

* @ represents function override whefe: A — B, f' = f @ {(a,b)} returnsf’ = f U
{(a,b)}if a & domf andf’ = f\ {(a, f(a))} U{(a,b)} if a € dom.
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— ale) =¢,

— a(to) = a(o), and

— a(xo) = za(o), wherex € T \ {t}.
Thus,« removes every occurrence ofrom the sequence. Then' 25> Ms, where
Ms(r) = My (p) + M1(q) and My (z) = M, (x) for everyz € P, \ {r}.

Proof By induction on the length of;.

. Ni,e . . Na,e .
Base Assumer; = e. Clearly,i =i and alsa "~ i.

Step Assume the theorem holds for somg let M; be such that N M, and let

M, be such that Na.afon) M,. We prove that it also holds if we extend by one

transition.

— First, assume that we extendby ¢. It is easy to see that this extension does
not have any effect on(c,). Therefore, we need to prove that firindoes not
violate the where-clause (i.8/>(r) = M (p) + Mi(q) andMy(z) = M;(x)
for everyx € P, \ {r}). Ast moves only one token fromto ¢ and does not
reset any place, this is straightforward.

— Second, assume that we extendly anz € P, \ {t}. First, we need to prove
that Ms[z) in N». As r contains at least as many tokensgasind My (x) =
M, (x) for everyz € P, \ {r}, we conclude that this is indeed the case. Next,
we need to prove that firing in both nets does not violate the where-clause.
This is straightforward as well, as any transition that adds a tokenaiso
adds a token te and any transition that removes a token frgmlso removes
a token fromr, and the remaining transitions are identical.

Lemma 2 (Under the ¢fp rule, sequences inV, correspond to sequences iVy).
Let N; and N, be two RWF-nets such thaly, N2) € ¢fip, letos € Ty and Ms, €

Nz,02

M(Ns) be such that =~ M, ando; = ((o2), whereg € Ty — Ty is defined as
follows:

- o) = .

— B(xo) = atB(o),if p € x4, and

— B(zo) = zf(o),ifp g x's.
Thus,( introduces an extra whenever place is marked. As a result, plageis un-
marked as soon as possible. TheM=* My, whereM; (p) =0, M;(q) = Ma(r) and
M (x) = My (x) for everyz € P\ {p, q}.

Proof By induction on the length ofs.

. Na,e . . Ni,e .
Base Assumer, = ¢. Clearly,i - i and alsa - i.

Step Assume the theorem holds for somg let M5 be such that Naig2 M, and let

M, be such that “2% ar, we prove that it also holds if we extend by one

transition.

12



— First, assume that we extendby anz such thap € z ¢ It is obvious that
M, [z) in Ny, and that afterwardsis also enabled. Furthermore, battand¢
do not violate the where-clause (i.e., whég(p) = 0, M;(q) = Mz(r) and
M (z) = My (z) for everyz € Py \ {p, ¢}.

— Second, assume that we extenbly anz such thap ¢ = . Again it is obvious
that M [z) in Ny, and thatr does not violate the where clause.

Theorem 2 (The ¢, rule preserves the option to complete)Let N; and N, be two
RWF-nets such thdtV,, Ny) € ¢§SP. ThenN; has the option to completéf N, has
the option to complete.

Proof Leta andg be as defined in lemmas 1 and 2.

= Assume thatV, does not have the option to complete, that is, there exists some

N2,02

My € Ns[i) such thab ¢ Ny[Ms). Thus, there exists@ € T3 such that ===

’
N2,0'2

M, but noo!, € Ty exists such thabl, 257 o. As a result; NuB(o2) M, for

a well-definedM;. Now assume thalv; does have the option to complete. As a

result, there exists @, such that NuBlg)on Bt theng V> Elr2)on) o, which

’
N27O'2

contradicts the assumption that ap € T exists such thadl, = * o. Thus,N;
does not have the option to complete.
< Similar to=-.

Theorem 3 (The ¢fqp rule preserves proper completion).Let N; and N, be two
RWF-nets such thatV,, N3) € ¢§SP. Then N, has proper completioiiff N, has
proper completion.

Proof Let«a andg be as defined in lemmas 1 and 2.

= Assume thatV, does not have proper completion, that is there exists shine
Ns[i) such thatd, > o. Thus, there exists @& € T such that Nayz2 Ms. Then

1 N1.B(w2) M such thatM; > o, andN; does not have proper completion.

« Similar to=.

Theorem 4 (The ¢fp, rule preserves dead transitions)Let V; and N be two RWF-
nets such thatNy, N2) € ¢&p. ThenN; contains dead transitionsf N, contains
dead transitions.

Proof Let«a andg be as defined in lemmas 1 and 2.
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= Assume thatV, contains no dead transitions, that is, for everyg T, there exists
someMs € Nyi) such thatMs > t. Letty be an arbitrary transition froriy,
and letM,; € Ns[i) be such thaf\/, >3 t,. Then there exists a, € Ty such

Naz,02

thati ~22° M,. As a resultg N1.B(o2) M, andM; >4 ty. As Ty, = Ty U {t},
only transitiont can still be dead. Howevercan only be dead if all transitions that
markp are dead, and these transitions exist(as1).

< Assume thatV; contains no dead transitions, that is, for evarg T; there exists
someM; € Ni[i) such thathM; >" t. Lett; be an arbitrary transition frori}

excludingt, and letM; € N;[i) be such that\/; >"S #,. Then there exists a

Nz,
o1 € Ty such that "2 M. As a resultj 2247 A1 and M, > ¢,. Thus,

N5 contains no dead transitions.

Theorem 5 (The ¢fp rule is soundness preserving)Let N; and N, be two RWF-
nets such thatN;, N») € ¢§SP. Ny is sound iffNy is sound.

Proof Follows from theorems 2, 3, and 4. [ |

3.2 Fusion of series transitions

In this subsection, we first presdraision of Series Transitions Rule for WF-ngissT)

and then extend the rule for RWF-netgi() by proposing additional requirements for
reset arcs. Therst rule is based on the Fusion of Series Transitions rule for Petri nets
by Murata [19]. The rule allows for the merging of two sequential transitioasd «

with one placep in between these two transitions into only one transitioithe rule
requires that there is only one inpu&nd output: for the placep, p is the only input of

u, and there are no direct connections between outputanél outputs ot.. The last
requirement ensures that there will only be one arc connecting the new transition
outputs oft in the reduced net. See the example in Figure 7 for an application of the
¢rsT rule. Transitiong andu have been merged into a new transitioim the right net.
Note that transitions andxz cannot be merged ashas two input places;(andr).

Definition 20 (Fusion of Series Transitions Rule for WF-nets¢ggr).

Let N; and N, be two WF-nets, wher&y/; = (P1>T17F1) and Ny = (PQ,TQ,FQ).
(N1, N2) € ¢rgr if there exists an input place € P, N P, an output placer €
P, N P,, aplacep € P, two transitionst, w € T3, and a transitionv € T \ T; such
that:

Conditions onN; :

1. ep = {t} (¢ is the only input op)

2. pe = {u} (uis the only output op)

3. eu = {p} (pis the only input of:)

4. teNue = & (any output ot is not an output of: and vice versa)

14



Fig. 7. Reduction of a WF-net using thg-sT rule

Construction ofV,:

5. =P \{P}
6. T = (Ty \ {t,u}) U {v}
7. Fy = (FyN((Py x To) U(Ty x Po)))U (ot x {o}) U ({v} x (£ Uu'd)\ {p}))

Theorem 6 (The ¢rgt rule is soundness preserving).et Ny and N> be two WF-nets
such that N1, No) € ¢rst. ThenN, is soundiff N, is sound.

Proof Thegrgt rule is boundedness and liveness preserving [19]. Soundness of a WF-
net corresponds to boundedness and liveness of the short-circuited WF-net [2]

The Fusion of Series Transitions Rule for RWF-ngt§) extends thebrst rule
by introducing reset arcs. The rule also allows for the merging of two sequential tran-
sitionst andw with one placep in between them into a single transition Figure 8
visualises theyf,. rule. Additional requirements (required to allow for reset arcs) are
that placep and output places af should not be source of any reset arcs and transition
u should not reset any place. The rule allows reset arcs from transitiod these arcs
will be assigned to the new transitienin the reduced net. Figure 9 shows a counter
example where is a reset place: transition sequerteeleads to a deadlock, which
does not exist in the other net. Figure 10 shows a counter example where transition
has reset arcs: transition sequencdeads to a deadlock, which does not exist in the
other net. Figure 11 shows a counter example where the postasatm@ftains a reset
place: transition sequenc¢ew results in two tokens in place which is not possible in
the right net. As a result, the left net is not sound whereas the right net is.

15
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Fig. 8. Fusion of Series Transitions Rule for RWF-net§s

Fig. 9. Placep is a reset place. (Note that the model on the left is not sound while the one on the
rightis.)

Definition 21 (Fusion of Series Transitions Rule for RWF-nets$f ). Let N; and
N> be two RWF-nets, wherd; = (P17T1aF17R1) and Ny = (PQ,TQ,FQ,RQ).
(N1, No) € ¢F . if there exists an input placé € P, N P», an output placer €
P, N Py, aplacep € Py, two transitionst, u € T3, and a transitionv € 75 \ T} such
that:

Extension of theérgt rule:

1. (P, Ty, F), (P2, 15, F»)) € ¢rst (Note that, by definition, the, «, v, andp
mentioned in this definition have to coincide with the, v, andp as mentioned in
the definition ofprgt.)

Conditions onR;:

2. Ry (p) = @ (pis not a reset place)
3. Ry(u) = @ (u does not reset)
4, for all ¢ € ue: R (q) = @ (any output place ofi is not a reset place)

16



Fig. 10. Transitionu resets a place that is effected by transitio(Note that the model on the left
is not sound while the one on the right is.)

Fig. 11. The postset of transition contains a reset place. (Note that the model on the left is not
sound while the one on the right is.)
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Construction ofRR,:
5. Ry ={(2,Ri(2))[z € ToNT1} U{(v, Ry ()}

We now present two lemmas that show that occurrence sequengésand N,
correspond to one another. These lemmas are then used to prove thigtheule
preserves the three criteria of soundness: the option to complete, proper completion,
and dead transitions.

Lemma 3 (Under the ¢f. rule, sequences inV; correspond to sequences its).

Let N; and N, be two RWF-nets such thay, N2) € ¢y, letoy € Ty and M; €

M(N;) be such that NLZU A, ande, = a(o1), wherea € Ty — Ty is defined as

follows:

— of
— af
- a(uo) = a(s), and
— af

Thus,a removes every occurrence offrom the sequence, and replaces every occur-

N2,02

rence oft withv. Theni ~ 2% M,, whereMs(z) = M, () + M (p) for everyz € v'¢
and My (z) = M, (z) for everyz & v'e.

Proof By induction on the length of;.

. Ni,e . . Nao,e .
Base Assumer; = ¢. Clearly,i -5 i and alsa = i.

Step Assume the theorem holds for somg let M, be such that Nus My, and let
M, be such that Naya(o1) M. We prove that it also holds if we extend by one

transition.

— First, assume that we extemdby ¢. ¢t andv have the same preset, thus we
can extendy(o) by v. ¢ adds a token to plage whereaw adds tokens to its
postset, which does not violate the where-clause.

— Second, assume that we extenby u. It is obvious that does not violate the
where-clause.

— Third, assume that we exteady z, wherex € P, \{t,u}. As all places inVy
contains at least as many tokens as their counterpai¥s {the where-clause),
we know thatz is enabled inV, as well. Furthermoregy does not violate the
where-clause.

Lemma 4 (Under the ¢f rule, sequences inV, correspond to sequences ity).
Let N; and N, be two RWF-nets such thédl;, N») € ¢§ST, letos € T3 and M, €

M(N>) be such that Na.g2 M, ando; = ((o2), whereg € Ty — Ty is defined as
follows:

- fle) =«
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— B(vo) = tup(o), and

- B(zo) = 2f(0), ifx € Ty \ {v}.
Thus,( replaces every occurrence ofwith tu. Then: N M, whereM;(p) = 0
and M, (z) = Ms(x) for everyz € Py \ {p}.

Proof By induction on the length of.

Nae . Nie .
Base Assumer, = ¢. Clearly,i - i and alsa - i.

Step Assume the theorem holds for somg let M5 be such that Na.g2 M, and let

M, be such that “27% ar, we prove that it also holds if we extend by one

transition.

— First, assume that we extemdby v. It is obvious thatd/; [t) in N, and that
afterwardsu is also enabled. Furthermore, the combinatiorandv does not
violate the where-clause.

— Second, assume that we extendy = such thatr € T» \ {v}. Again it is
obvious thatM; [x) in N7, and that: does not violate the where clause.

Theorem 7 (The ¢£ rule preserves the option to complete)Let N; and N, be
two RWF-nets such th&tV,, N») € ¢fsr. ThenN; has the option to completéf N,
has the option to complete.

Proof Let o and be as defined in lemmas 3 and 4. The proof is similar to the proof
of Theorem 2, but with different andz. [ |

Theorem 8 (The ¢E¢ rule preserves proper completion).Let N; and N, be two
RWF-nets such thatV,, N;) € ¢§ST. Then N; has proper completioiiff N, has
proper completion.

Proof Let o andg be as defined in lemmas 3 and 4. The proof is similar to the proof
of Theorem 3, but with different and 3. |

Theorem 9 (The ¢ rule preserves dead transitions)Let V; and N be two RWF-
nets such thatNy, N2) € ¢fr. ThenN; has proper completioiff N, has proper
completion.

Proof Let « andg be as defined in lemmas 3 and 4. The proof is similar to the proof
of Theorem 4, but with different andz. |

Theorem 10 (The ¢f. rule is soundness preserving)Let N; and N, be two RWF-
nets such thaN,, N») € ¢§ST. N7 is sound iff N5 is sound.

Proof Follows from theorems 7, 8, and 9. [ |
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3.3 Fusion of parallel places

In this subsection, we first preseftision of Parallel Places Rule for WF-n€igrpp)

and then extend the rule for RWF-netsf¥.,) by proposing additional requirements
for reset arcs. Therpp rule is a generalization of the Fusion of Parallel Places rule
for Petri nets by Murata [19]. The rule allows for the merging of multiple places (at
least two) with the same inputs and outputs into a single pjaGee the example in
Figure 12 for an application of therpp rule. Place®; andp, have the same input set
{t1,1t2,t3} and the same output sét;,x2}. The reduced net contains a new place
that has the same input and output sets as placaeadp,.

Fig. 12.Reduction of a WF-net using th@-pp rule

Definition 22 (Fusion of Parallel Places Rule for WF-netspgpp).

Let N; and Ny be two WF-nets, wher&y; = (Pl,Tl,Fl) and Ny, = (PQ,TQ,FQ).
(N1, N2) € ¢ppp if there exists an input placé € P; N P, an output placer €
Py N Py, places@ C P, where|Q| > 2 and a place; € P, \ P; such that:

Conditions onN; :

1. for all pz,py € Q : epx = epy (input transitions for all places i) are identical)
2. forall pz,py € Q : pxre = pye (output transitions for all places i are identical)
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Construction ofV,:

3. = (P\Q)U{q}
4. To =T,

5. Fy = (F1 N ((Py x To) U(Ty x Py)))U ("&px {g})U({qg} x p's") wherep € Q

Theorem 11 (The ¢rpp rule is soundness preserving)Let N; and N, be two WF-
nets such thatNy, N») € ¢ppp. ThenNy is soundiff N, is sound.

Proof The¢ppp rule is boundedness and liveness preserving [19]. Soundness of a WF-
net corresponds to boundedness and liveness of the short-circuited WF-net [2J

The Fusion of Parallel Places Rule for RWF-ne(tﬁfF%PP) extends theprpp rule
by introducing reset arcs. The rule also allows for the merging of places in Q (i.e.,
p1 to pp) that have the same inputs and outputs into a single pladée additional
requirement is that these places are reset by the same set of transitions. If none of the
places are reset places, then it is obvious that the rule holds. If one is a reset place, then
other places should also be reset by the same set of transitions. Figure 13 visualises the
¢Eop rule. As all places i§) = {p1, ..., pr.} have the same input, output and reset arcs,
these identical places can be merged into a single place while preserving the soundness
property. Placey in the reduced net has the same input, output and reset arcs as any
place inQ.

Fig. 13.Fusion of Parallel Places Rule for RWF-net§pp

Definition 23 (Fusion of Parallel Places Rule for RWF-nets:¢ff.p). Let Ny and
No be two RWF-nets, WherBh = (Pth,Fl,Rl) and Ny = (PQ,T27F27R2).
(N1, No) € ¢f,p if there exists an input place € P, N P, an output placer €
P, N Py, places@ C P, where|Q| > 2 and a placey € P, \ P; such that:

Extension of therpp rule:

1. (P, Ty, F), (P2, T, F»)) € ¢rpp (Note that, by definition, thg o, @, andg
mentioned in this definition have to coincide with the, @, andg¢ as mentioned
in the definition ofpppp.)
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Condition onR;:

2. for all pz,py € @ : Ry (px) = Ry (py) (all places inQ@ are being reset by the
same transitions)

Construction ofRR,:

3. Ri ={(z, Ri(z)NP)|z € ToNT1 } ®{(z, (R1(z)NPy)U{q})|z € RT (p)Ap €
Q

Theorem 12 (The ¢ rule is soundness preserving)Let N; and N, be two RWF-
nets such thatNy, N,) € qbfipp. Ny is sound iffNVy is sound.

Proof It is easy to see that the state spaces of both nets are identical, except that the
markings differ: A marking in the state space/éf contains place®, and every one of

them containg: tokens, whereas a marking in the state spac¥-ofontains one place

¢ which contains: tokens. |

3.4 Fusion of parallel transitions

In this subsection, we first presefRtision of Parallel Transitions Rule for WF-nets
(¢rpT) and then extend the rule for RWF-netgi.) by proposing additional require-
ments for reset arcs. Thapr rule is a generalization of the Fusion of Parallel Tran-
sitions rule for Petri nets by Murata [19]. The rule allows for the merging of multiple
transitions (at least two) that have the same inputs and outputs into a single transition.
See the example in Figure 14 for an application of¢her rule. Transitiong; andt,

have the same input séb,, p2, p3 } and the same output sgtq, 22 }. The reduced net
contains a new transitiomthat has the same input and output sets andt,.

Fig. 14.Reduction of a WF-net using thig-pr rule
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Definition 24 (Fusion of Parallel Transitions Rule for WF-nets: ¢gpr). Let N7 and
N, be two WF-nets, wherd/; = (Pl,Tl,Fl) and N, = (PQ,T27F2). (Nl,NQ) S
¢orpr if there exists an input placec P, N P, an output place € P, N P, transitions
V C Ty where|V| > 2, and a transitiorw € T, \ 71 such that:

Conditions onN;:

1. for all tz, ty € V : otz = oty(input places for all transitions iV are identical)
2. forall ta, ty € V : txe = tye(output places for all transitions if¥ are identical)

Construction ofV,:

3. =P
4. Ty = (T1\ V) U {v}

5. Fy = (F1N((Py x Ty) U (Ta x P2)))U({v} x &)U (t's x{v}) wheret € V

Theorem 13 (The ¢rpr rule is soundness preserving)Let N; and N, be two WF-
nets such thatN,, N2) € ¢ppr. ThenN; is soundiff N is sound.

Proof The ¢ppr rule is boundedness and liveness preserving [19]. Soundness of a
WEF-net corresponds to boundedness and liveness of the short-circuited WF-n& [2].

The Fusion of Parallel Transitions Rule for RWF-ndisl, 1) extends thepppr
rule by introducing reset arcs. The rule allows for the merging of transitidfie., t;
to t) that have the same inputs and outputs into a single transitidime additional
requirement is that these transitions should reset the same set of places (if any). If no
transition has reset arcs, then it is obvious that the rule holds. If one transition resets
a place, then other transitions must also reset the same place. Figure 15 visualises the
¢Er rule. As all transitions iV = {t1,...,t;} now have the same input, output
and reset arcs, these identical transitions could be merged into a single transition while
preserving the soundness property. Transition the reduced net has the same input,
output and reset arcs as any transitian V.

Fig. 15.Fusion of Parallel Transitions Rule for RWF-netgp
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Definition 25 (Fusion of Parallel Transitions Rule for RWF-nets: ¢&.). Let Ny
and N, be two RWF-nets, whel¥; = (Pl,Tl, Fi, Rl) and N, = (PQ,TQ, Fs, RQ)
(N1, N2) € ¢ft if there exists an input pladec PN P, an output place € PN P,
transitionsV C T; where|V| > 2, and a transitiorw € T3 \ T} such that:

Extension of theérpr rule:

1. (P, Ty, F1), (P, T5, F»)) € ¢érpr (Note that, by definition, thé o, V, andv
mentioned in this definition have to coincide with the, V', andv as mentioned
in the definition otppp.)

Condition onR;:

2. forall tx, ty € V : Ry(tx) = R1(ty) (all transitions inV reset the same places)

Construction ofRs:
3. Ro={(z,Ri(2))|z e TNTi}U{(v,Ri(2))|z € V}

Theorem 14 (The ¢, rule is soundness preserving.Let N; and N, be two RWF-
nets such thatNy, N2) € ¢&,. Ny is sound iffN, is sound.

Proof It is obvious that the state spaces of both nets are identical, except that some
edges differ: where the state space\afcontains edges for transitionsup toty, the
state space aW, only contains one edge for transition |

3.5 Elimination of self-loop transitions

In this subsection, we first preseBlimination of Self-Loop Transitions Rule for WF-
nets (¢rrr) and then extend the rule for RWF-netsi( ) by proposing additional
requirements for reset arcs. The rule is based on the Elimination of Self-Loop
Transitions rule for Petri nets by Murata [19]. The rule allows the removal of a self-
loop transition. A self-loop transition is one that has one input place which is also the
only output place of the transition. See the example in Figure 16 for an application of
the g rule. Transitiont has been abstracted from in the reduced netiaghe only
input place and the only output placetof

Definition 26 (Elimination of Self-Loop Transitions for WF-nets: ¢g11). Let Ny
and N, be two WF-nets, whe®; = (P, Ty, Fy) and Ny = (P, T, F). (N1, No) €

ogrr if there exists an input placec P, N P,, an output place € P, N P,, a place
p € Py N Py, and a transitiont € T; such that:

Conditions onVy:

1. ot = {p} (pis the only input place of)
2. te = {p} (pis the only output place dj
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Fig. 16.Reduction of a WF-net using th:.r rule

Construction ofN5:

3. =D
4. T, =T\ {t}
5. Fy = (F1 N ((Py x T) U (Ta x P2)))

Theorem 15 (The ¢grr rule is soundness preserving)Let N; and Ny be two WF-
nets such thatN,, N») € ¢grr. ThenN; is soundiff N, is sound.

Proof The ¢grr rule is boundedness and liveness preserving [19]. Soundness of a
WEF-net corresponds to boundedness and liveness of the short-circuited WF-n& [2].

The Elimination of Self-Loop Transitions Rule for RWF-nétg; 1) extends the
¢eLT rule by introducing reset arcs. The rule also allows removal of a trangitidrich

has a single place as its input and its output. The additional requirement is that transition
t has no reset arcs. Figure 17 visualisesdfig rule.

B DD P

Fig. 17.Elimination of Self-Loop Transitions Rule for RWF-netsZ,
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Definition 27 (Elimination of Self-Loop Transitions Rule for RWF-nets: ¢&; ;). Let
N; and N, be two RWF-nets, wherg, = (Plv Ty, Fl, Rl) andN; = (PQ, T, Fy, RQ)
(N1, N2) € ¢ff 1 if there exists an input placec PN P,, an output place € PN Pz,
a placep € P, N Py, and a transitiont € T such that:

Extension of thegr T rule:

1. (P, Ty, F), (P, T5,F»)) € ¢rprr (Note that, by definition, the o, ¢, andp
mentioned in this definition have to coincide with the, ¢, andp as mentioned in
the definition ofpgrr.)

Condition onR;:

2. Ry(t) = @ (t does not reset)

Construction ofRs:
3. Ry = {(Z,Rl(z))\z Ty ﬂTl}

Theorem 16 (The ¢&, 1. rule is soundness preserving)Let N; and N, be two RWF-
nets such thatN,, N») € ¢§LT. Ny is sound iffN; is sound.

Proof It is obvious that the state spaces of both nets are identical, except that the
state space aW; contains additional self-edges. Furthermore, it is clearttbah only

be dead if every transition that markss dead. Therefore, removingoreserves dead
transitions. |

We have presented five reduction rules for RWF-nets based on the reduction rules
defined by Murata [19]. We have omitted the sixth rule, “Elimination of Self-Loop
Places” as this rule requires a place to be marked in an initial marking of a net. For WF-
nets and RWF-nets, this is not possible as the input plécéhe only place that could
be marked in an initial marking. By definition,cannot be a self-loop (i.e., it cannot
have any incoming arce = @) and therefore, this rule is not applicable to WF-nets
and RWF-nets. In addition to the “Murata rules” we also present some additional rules.
These rules turn out to be particularly useful when reducing YAWL models.

3.6 Fusion of equivalent subnets

In this subsection, we first preseRtusion of Equivalent Subnets Rule for WF-nets
(¢rrs) and then extend the rule for RWF-netsgif) by proposing additional require-
ments for reset arcs. Thergs rule allows removal of multiple identical subnets by
replacing them with only one subnet. The rule requires that pairs of transitions have the
same input and output places. See the example in Figure 18 for an application of the
orgs rule. The set of transitiong; has been merged inid;. The set of transition®;

has been merged intq, and places id)5 have been merged into one placéote that

the name of the rule may be a bit misleading. This rule only applies to subnets having
the structure shown in Figure 18. The reason that this rule has been added is that it is
very effective in reducing YAWL models (cf. [31]).
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Fig. 18.Reduction of a WF-net using th@-gs rule
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Definition 28 (Fusion of Equivalent Subnets Rule for WF-netsi¢rgs). Let N; and
N, be two WF-nets, wherd/; = (Pl,Tl,Fl) and N, = (PQ,TQ,FQ). (Nl,NQ) S
¢rgs if there exists an input placee P, N P,, an output places € P, N P, places
Q1,Q3 CPLNPy,Qy C Py Whel’e|Q2| >2,re b \P]_, tranSitionsvl,Vé C Ty,
andVs, Vy C Ty \ T} such that:

Conditions onN;:

1. Vi = {v{"®|q1 € Q1 A q2 € Q2} (every transition of; is of the formv{* %)

2. Vo = {vd%|qe € Q2 A g3 € Q3} (every transition ol is of the formud> %)

3.forallp e Qs :s'p C V3 Ap'eC Vs (preset and postset of all placesdh, are
from Vi andV; respectively)

4, forall 7% € V; :$ o?% = {1} A% 8= {g,} (preset of?"? is ¢; and
postset igy,)

5. for all vd% € V, & vf% = {go} A vP® 8= {g3} (preset ofvl>® is ¢, and
postset igy3)

Construction ofN5:

6. P2:(P1\Q2)U{T}

7.7 = (Tv\ (ViuVa)) U (V3 U V) whereVs = {v3"" |1 € Q1} andVy =
{vi®las € Qs}

8. F2 = (F1 ﬁ((PQ X TQ)U(TQ X Pg)))U(‘/g X {T})U({’I"} X W)U{(ql,vgl’r)|q1 (S
Q1 Av§" € Vs U{(vi™, g3)las € Qs Ay ™ € Va}

Theorem 17 (The ¢rgs rule is soundness preserving)Let N, and N, be two WF-
nets such thatN,, N2) € ¢rrs. N7 is sound iffN» is sound.

Proof The state spaces of both nets are comparable, such that where the state space of
N contains edges for transitions 1y, the state space df, only contains edges for
transitions inV3. Similarly, the set of transitiong; in V; is nowVy in N,. The set of
places, has been replaced with |

The Fusion of Equivalent Subnets Rule for RWF-ngtsgs) extends thepgpgs rule

by introducing reset arcs. The rule allows the removal of multiple identical subnets by
replacing them with only one subnet. Additional requirements are that all plaégs in
are reset by the same set of transitions and all transition palrs &nd V5 also reset

the same places. Figure 19 visualisesdffgg rule.

Definition 29 (Fusion of Equivalent Subnets Rule for RWF-nets:¢f.q). Let Ny
andN2 be two RWF-nets, Whenﬁl = (Pl,Tl,Fth) andN2 = (P27T2,F2,R2).
(N1, N2) € ¢fq if there exists an input placec Py P, an output place € PN P,
places@1,Q3 € Py N Py, Q2 C P, where|Q2| > 2, r € P, \ P, transitions
V1,V C Ty, andVs, V, C Ty \ T such that:

Extension of thergg rule:

1. ((Pl,Tl, Fl), (PQ,TQ,FQ)) e ¢FES (Note that, by deﬁnition, thﬁ 0, le QQ, Qg,
V1, Vo, V3, and V; mentioned in this definition have to coincide with the, @1,
Q2, Q3, V1, V5, V3, andV, as mentioned in the definition ofgs.)
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Fig. 19.Fusion of Equivalent Subnets Rule for RWF-neifg

Condition onR;:

2. forall g1 € Q1 andqo,¢h € Qa : R(vi %) = R(v‘fl’q;) (transitions inV; that
have the same input set should also have the same reset arcs)

3. forall g3 € Q3 and gz, ¢h € Q2 : R(v{*®) = R(v{*?®) (transitions inV; that
have the same output set should also have the same reset arcs)

4. for all g2, ¢5 € Q2, Ry (g2) = Ry (¢5) (places inQ- are reset by the same set of
transitions)

Construction ofRR,:

5 Ry = {(z,Rl(z) n P2)|Z elrnN Tl}
®{(z, (R1(z) N P2 U{r}))|z € Ry (q2) A g2 € Q2}
U{(v5"", Ry (vf"*) N P)|g1 € Q1 A g2 € Qa}
U{(vr®, Ri(v3>®) N P2)lg2 € Q2 A g3 € Qs}

Theorem 18 (The ¢4 rule is soundness preserving)Let N; and N, be two RWF-
nets such thaN,, Na) € ¢§ES. Ny is sound iffNy is sound.

Proof The proof is similar to the one for thérgs rule. The state spaces of both nets
are comparable, such that where the state spadg abntains edges for transitions in
V1, the state space @¥, only contains edges for transitions¥j. Similarly, the set of
transitionsV; in V; is now Vy in No. The set of placeg), has been replaced with
Additional requirements for reset arcs ensure that the transitions can be abstrdted.

3.7 Abstraction

In this subsection, we first presefibstraction Rule for WF-nef®,) and then extend
the rule for RWF-nets¢X) by proposing additional requirements for reset arcs. The
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¢ rule is based on the Abstraction rule for Petri nets from Desel and Esparza [12].
The rule allows the removal of a plaseand a transitiort, wheres is the only input

of ¢, t is the only output of and there is no direct connection between the inputs of
with the outputs of. See the example in Figure 20 for an application of gherule.

The reduced net on the right abstracts from plaeed transitiort and provides direct
connections between the inputssoéind the outputs of.

Fig. 20.Reduction of a WF-net using thi rule

Definition 30 (Abstraction Rule for WF-nets: ¢4). Let N1 and N, be two WF-nets,
whereN; = (P, Ty, Fy) and Ny = (Pa, T, F3). (N1, N2) € ¢4 if there exists an
input placei € P, N P, an output place € P, N P, places@ C P, N P, a place
s € P\ Q, transitionsU C T; N Ty, and a transitiort € T; \ U such that:

Conditions onNV :

ot = {s} (sis the only input of)

se = {t} (t is the only output of)

es = U (transitions inU are input transitions for)

te = () (transitions in@ are output transitions fot)

(es x te) N F' = & (any input ofs is not connected to an outputbénd vice versa)

aprwbdE

Construction ofV,:

6. P, =P\ {s}
7. T, =T\ {t}
8. Fy = (F1N((PyxTp) U (Ta x P2)))U (s xt'e)
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Theorem 19 (The ¢4 rule is soundness preserving)Let N; and N, be two WF-nets
such that N1, No) € ¢a. ThenNy is soundiff N, is sound.

Proof The ¢4 rule is boundedness and liveness preserving as shown by Desel and
Esparza [12]. Soundness of a WF-net corresponds to boundedness and liveness of the
short-circuited WF-net [2]. |

The Abstraction Rule for RWF-ne(®X) extends thes rule by introducing reset
arcs. The rule allows for the removal of a placand a transitiort, wheres is the only
input of ¢, ¢ is the only output ok and there is no direct connection between the inputs
for s with the outputs for. Additional requirements are that transitibdoes not reset
any place, placa is not reset by any transition, and outputs fare not reset by any
transition. Input transitions for placecan have reset arcs. Figure 21 visualisesstfie
rule.

it

Fig. 21. Abstraction Rule for RWF-netgi¥

Definition 31 (Abstraction Rule for RWF-nets: qﬁﬁ). Let N; and N, be two RWF-
nets, whereV; = (Pl,Tl, Fl, Rl) andN, = (PQ,TQ, Fs, RQ) (]\717 NQ) € qbﬁ if there
exists an input placé € P; N P,, an output place € P, N Py, places) C PN P, a
places € P, \ Q, transitionsU C Ty N T5, and a transitiory € T \ U such that:

Extension of the) rule:

1. (P, Ty, F1), (P, Ts, F»)) € ¢ (Note that, by definition, thg o, s, ¢, Q, andU
mentioned in this definition have to coincide with, s, ¢, Q, andU as mentioned
in the definition ot .)

Conditions onR?;:

2. Ry (s) = @ (sis not a reset place)
3. Ry(t) = @ (t does not reset)
4, forall ¢ € te : R (¢q) = @ (all output places fot are not reset places)
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Construction ofRR,:
5. Ry = {(z,Rl(z) n P2)|Z eTsN Tl}

Theorem 20 (The ¢ % rule is soundness preserving).et N; and N be two RWF-nets
such that(Ny, N») € ¢%. Ny is sound iffN5 is sound.

Proof This rule is quite close to thefi rule (i.e., the fusion of two subsequent
transitions), except that it rule allows fe(p for the ¢ rule) to have multiple inputs.
Using thepf . rule, the proof is quite simple. It is obvious that we can replaaadt

by s1, ..., sy andtq, ..., t in such a way thaés; = {u;}, s;® = {t;}, et; = {s;}, and
t;# = Q while preserving soundness. Next, we can useshe. rule to reduce every
s; andt;. Figure 22 visualises the proof of the soundness preserving property ¢fthe
rule.

G Qm

Fig. 22.Proof sketch for the % rule

The other two linear dependency rules described by Desel and Esparza [12] to remove
nonnegative linearly dependent places and nonnegative linearly dependent transitions
are only applicable to free-choice nets. The rules are said to be not strongly sound for
arbitrary nets (i.e.NV is well-formed if and only ifN’ is well-formed) [12]. Hence, they
cannot be used for WF-nets and RWF-nets.

4 Related work

A number of authors have investigated reduction rules for Petri nets and for various
subclasses of Petri nets. In [9] and [10], Berthelot presents a set of reduction rules for
general Petri nets. He proposes transformations on places and transitions that preserve
language, deadlock-freeness, 1-liveness and liveness for place/transition systems. They
include transformation on places such as structurally redundant places, double places
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and equivalent places and fusion of transitions such as post-fusion, pre-fusion and lat-
eral fusion. In [19], six reduction rules are presented for Petri nets. In [12], a set of re-
duction rules are proposed for free-choice Petri nets while preserving well-formedness.
They include the abstraction rule, linear dependency rules for a non-negative linearly
dependent place and for a non-negative linearly dependent transition. In [24], authors
extends the reduction rules given by Berthelot for Time Petri nets. Six reduction rules
that preserve correctness for EPCs including reduction rules for trivial constructs, sim-
ple splits and joins, similar splits and joins, XOR loop and optional OR-loop are pro-
posed [13]. Some reduction rules presented for EPCs such as reduction rules for simple
splits and joins and reduction rules for similar splits and joins are related to reduction
rules that we have defined for WF-nets. However, these reduction rules do not take
cancellation into account.

Reduction rules have been suggested to be used together with Petri nets for the
verification of workflows (cf. Chapter 4 of the book by van der Aalst and van Hee [5]).
In [26], the authors present how to decide relaxed soundness property of workflows
with cancellation and OR-joins using invariants. We follow a similar approach with a
set of reduction rules for workflow nets with cancellation regions and OR-joins using
reset nets.

5 Conclusion

An important correctness notion for a workflow net is the soundness property. A work-
flow net is sound if it has the option to complete, proper completion, and no dead tran-
sitions. Verification can be used to detect whether a net satisfies the soundness property.
When a workflow language supports cancellation behaviour, verification becomes time
consuming, challenging and sometimes not even possible. In our previous work [30],
we proposed a new verification technique for workflows with cancellation and OR-joins
using reset nets and reachability analysis. We found that state based analysis for large
nets can be time consuming and this has motivated us to consider possible reduction
rules for such nets while preserving the soundness property.

A reduction rule can transform a large net into a smaller and simple net while pre-
serving certain interesting properties and it is usually applied before verification to re-
duce the complexity and to prevent state space explosion. There are no reduction rules
defined for reset nets in the literature. In this paper, we continue our work on verifica-
tion of workflows with cancellation by exploring possible reduction rules for RWF-nets.
We have presented a set of reduction rules for WF-nets and RWF-nets that are sound-
ness preserving. These rules are based on existing reduction rules for Petri nets and
free-choice nets [19, 12] and they have been extended and generalised as necessary. We
have also provided detailed proofs for these reduction rules. We have also realised these
reduction rules as part of the verification feature in the workflow language YAWL [1].
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