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Abstract. In 2000, after a comprehensive survey of tools and techniques
for workflow management, 20 control-flow patterns were identified [5]
and made these available through www.workflowpatterns.com. Since then,
many commercial and academic workflow management systems have been
evaluated using these patterns. Moreover, standards such as BPEL and
XPDL have been evaluated and these evaluations have triggered improve-
ments in them. Although the 20 workflow patterns have proven to be
useful, the selection of these patterns was done in an ad-hoc manner and
the description of the patterns in natural language has been rather am-
biguous. Therefore, we propose a more analytical approach using a new
Workflow Pattern Specification Language (WPSL). WPSL is independent
of any implementation language utilized by contemporary workflow man-
agement systems. In this paper, we analyze the 20 original workflow pat-
terns using WPSL, discuss the different variants of the patterns, and use
WPSL to capture the detailed semantics of existing workflow management
systems.

1 Introduction

A multitude of commercial workflow systems is available on the market today.
These systems can be characterized by the wide range of unique features and
capabilities of modelling languages they implement. The lack of the appropriate
standards and limited adoptance by commercial vendors of standards proposed by
the Workflow Management Coalition [27, 28] and the Object Management Group
[13] explains why comparison of contemporary workflow systems, based on differ-
ent concepts and paradigms, is a non-trivial task.

When automating business processes there is often a need to express specific
process steps using the functionality available in workflow systems. Since the func-
tionality of modeling languages employed by workflow systems differs significantly,
the selection of an appropriate workflow system is hard to make. This problem
has been addressed in [5, 1, 23, 22, 4] by formulating the requirements for workflow
languages in form of patterns. The initial set of control-flow patterns has been
inspired by capabilities of WFMS available for analysis. Note however, that the



classical set of the control-flow patterns [5] turned out to be incomplete. This was
no surprise as the original set of patterns was inspired by workflow systems avail-
able in the late nineties rather than obtained by systematic analysis. Moreover,
current pattern definitions are defined informally and hence can be interpreted
in various ways. In this paper, we address this issue using a systematic approach
based on a comprehensive conceptual foundation.

To illustrate different capabilities of the modelling languages adopted by work-
flow systems, we briefly review the workflow systems YAWL, COSA, Staffware
and Oracle BPEL PM. We show that even basic constructs such as the XOR-
join and AND-join (the Petri-net representations of which are given in Figure 1),
which are supported by the majority of workflow systems, are not interpreted in
a uniform way.

In Petri-nets, activities are modelled by transitions and causal dependencies
are modelled by places, transitions, and arcs. The XOR-join specifies that several
distinct paths come together without synchronization (see a place p1 with ingoing
arcs from transitions A and B in Figure 1(a)). The AND-join specifies the syn-
chronization of multiple paths (see a transition C with incoming arcs from places
p1 and p2 in Figure 1(b)).
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Fig. 1. XOR-join and AND-join in Petri Nets

The Petri-net based workflow system YAWL offers a direct support for the
XOR-join and AND-join constructs (see Figure 2(a) and (b) respectively). Places
in YAWL have unbounded capacity and to enable a task, each input place must
contain at least one token to enable a task. In contrast to Petri nets, YAWL also
allows the modelling of an OR-join (Figure 2(c)), which is a construct that may
behave like an XOR-join or an AND-join (or a mixture of the two) depending on
the context in which it is used. I.e. the OR-join waits untiil no additional tokens
can arrive.

COSA is a Petri-net based workflow management system. The main building
blocks of COSA are states, activities, and transitions, which are mapped directly
on the concepts of Petri-nets as places, transitions, and arcs respectively. Figure 3
depicts the XOR-join and the AND-join on the nets (a) and (b) respectively.
COSA can be considered as a safe Petri-net, which is characterized by at most
one token being stored in a place at any given time. Hence, activities block when
the output states are not empty. For example, activity A blocks when there is a
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Fig. 2. Notation of XOR/AND/OR-joins in YAWL

token in place s1. As a result, COSA behaves differently from YAWL and ordinary
Petri nets.
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Fig. 3. Notations of XOR/AND-joins in COSA: activities block if not all output states
are empty

The XOR-join and AND-join constructs in Staffware are denoted by means
of Step and Wait objects (see models (a) and (b) of Figure 4 respectively). The
Step C behaves as an XOR-join, i.e. it is triggered when Step A or Step B has
completed. Only one instance of C can be active at a time. For instance, if Step
C is still active and a new trigger arrived, this trigger will be ignored and all
information associated with it will be lost. Note that this way a “race condition”
is created. Just like COSA, Staffware forces intermediate states to be “safe”.
However, COSA enforces safeness by blocking activities, while Staffware simply
removes excess triggers. The Wait object synchronizes left and top input arcs.
This object may have only one left and up to 16 top arcs. However, the Wait
object can be triggered only by a signal arriving at the left arc. When the object
has been triggered, it starts evaluating the status of the top arcs. When all input
arcs provided input, the Wait object executes. Note that when used in a loop,
the Wait object behaves differently. For instance, if Step B is in the loop, but
Step A is not, then for the repeated enabling of Step C, it is sufficient for Step
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B to complete. However, if both steps A and B are in the loop, they both must
complete in order to trigger Step C again.

(a)
 (b)


 
  


Fig. 4. Constructs for (a) an XOR-join and (b) an AND-join in Staffware. The default
semantics of a step (e.g. C) is an XOR-join. A wait step (sand-timer symbol) needs to
be inserted to synchronize flows (AND-join))

Currently there are many systems supporting BPEL [9]. In this paper, we
selected Oracle BPEL as a representative of this class. Oracle BPEL PM imple-
ments the XOR-join and the AND-join by means of BPEL activities switch and
flow respectively. In contrast to YAWL, Staffware and COSA, these constructs
are applied within the structured workflow, i.e. every join is preceded by the cor-
responding split-construct. This way the corresponding processes are safe and the
exceptional situations mentioned for COSA and Staffware cannot occur.

 
 

(a)
           (b)


Fig. 5. Constructs for an XOR-join and an AND-joins in Oracle BPEL PM. Although
BPEL is a textual language, a graphical interface is provided which directly reflects the
BPEL code

We showed that implementation of XOR- and AND-joins in COSA, YAWL,
Staffware and Oracle BPEL PM differ by the capacity of places, blocking be-
havior of activities, etc. Thus, even simple constructs such as the XOR-join and
AND-join are not interpreted in a uniform way in different WFM systems. In
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order to distinguish between the differences identified in the modelling languages
we propose a Workflow Pattern Specification Language (WPSL) that is formally
defined and has a graphical notation that can be used as a means of analyzing
and reasoning about the differences in the modelling languages. In addition, we
apply WPSL to increase the degree of precision and completeness of the classical
set of the control-flow patterns. Note that the proposed language can be applied
to describe a wide variety of control-flow constructs.

The rest of this paper is organized as follows. Section 2 describes the goal,
scope, basic premises and the structure of our WPSL. The syntax and semantics
of WPSL are formally described in Section 2.2. Next, an analysis of the classical
control-flow patterns is done by means of WPSL in Section 3. In Section 4 the
paper concludes with a discussion of the lessons learned. Related work is outlined
in Section 5. Finally, the conclusions and future work are discussed in Section 6.

2 Workflow Pattern Specification Language (WPSL)

In this section we introduce the main concepts of WPSL, followed by the formal
definition of the language and an example illustrating its applicability.

2.1 Introduction to the language

The graphical Workflow Pattern Specification Language (WPSL) aims to capture
the requirements of Process-Aware Information Systems (PAIS) expressed in the
form of patterns. The current specification covers only the control-flow perspective
and does not consider the data and organizational aspects. The main building
block in WPSL is a Task, which is a basic modelling construct encountered in
the process definition language of any Workflow Management System (WFMS).
WPSL offers a means for visualizing all kinds of task variants that can be used
for modelling a business process and provides different ways of combining these
tasks for routing purposes.

The scope of the language is limited to a single case, covering the details of the
case routing, while leaving the external relationships with other cases, processes,
and external environments out of consideration.

There are two fundamental premises in regard to the WPSL semantics. First
of all, all behavior in the modelled process is associated with active tasks, the
execution of which changes the state of the modelled system. Secondly, the mod-
elled process behaviors are message-driven and discrete. Discrete means that a
modelled system is characterized by a certain state at every moment of time.

WPSL defines fundamental language constructs for representing the control-
flow patterns. Figure 6 illustrates the semantics areas of WPSL and the hierar-
chical relationship between them.

On the bottom layer, there are three structural language constructs: a task, a
channel, and a message. These are the main entities of which a generic workflow
net (GWF-net) is composed. In terms of Petri nets, a task, a channel, and a
message correspond to a transition, a place, and a token respectively. A task is an
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Fig. 6. Schematic semantics of WPSL

abstraction of an activity, characterized by a set of inputs and outputs, assigned
to a certain resource. A message refers to the task input/output expressed in
terms of a basic or complex data structure. A message is an abstract wrapper of
the control data, used for routing purposes only, and/or the production data, i.e.
any information (excluding control data) that can be manipulated as a discrete
entity for the purpose of executing a certain activity. Note that by using messages
we abstract from the actual data contained in the messages. A channel connects
tasks and is used to convey messages.

The next layer is behavioral; it addresses the details of inter-task and intra-task
behaviors. The intra-task area defines the variants of the task behavior based on
the task properties, while the inter-task area addresses different ways of combining
the structural entities together.

At the highest level of abstraction there is a set of extensible control flow
patterns, which is obtained as a result of the interplay between the inter- and
intra-task behaviors. A control-flow pattern is a three-part rule, which expresses
a relation between a certain context (the lifecycle of a single case), a problem
(addressing the behavioral aspect of the task routing), and a solution (expressed
in terms of the structural entities).

In the WPSL structure depicted in Figure 6 we have introduced only the main
concepts. Now we will present a detailed description of WPSL, all elements of
which are graphically depicted in Figure 7.

Tasks send and receive messages to/from channels via ports, which play the
role of message gates. Ports producing messages are called output ports. Ports
consuming messages are called input ports. Every input port is mapped to a
channel, which stores messages. We will refer to the combination of an input port
and a channel to which this port is mapped as a task input, whilst we understand
a task output to be the combination of an output port and a channel to which this
port sends messages. We denote input and output channels as squares residing on
the front and back edges of the task block respectively.
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Task attributes:


jtype: join type

blp: blocking mode of output ports

mcm: message consumption mode

ism: input selection mode

IS: input sets

OS: output sets

CS: cancellation set


Fig. 7. The various notations for tasks, channels, and ports

Every GWF-net may have multiple input channels and output channels, how-
ever exactly one input channel and one output channels are involved in the initi-
ation and termination of the process instance.

Every channel is characterized by a set of parameters, such as the maximal
capacity, the minimal capacity, and the enabling status. The maximal capacity
parameter defines how many messages the channel may hold at once. A channel
with unlimited maximal capacity is called an unbounded channel, while a chan-
nel with limited maximal capacity is called a bounded channel. We will refer to
bounded channels that are able to hold at most one message at a time, as safe
channels. We denote safe, bounded and unbounded channels as a single, double
and triple circles respectively. The direction of the arrows represents the message
flow.

The minimal capacity parameter of a channel defines at least how many mes-
sages the channel must contain in order to make a port, consuming messages
from this channel, enabled. A channel is enabled if its minimal capacity has been
reached, otherwise the channel is said to be disabled.

Depending on the enabling status of a channel, an input port mapped to it can
be either enabled or disabled. An input port is enabled if the channel to which this
port is mapped is also enabled, otherwise the port is considered to be disabled.

Depending on the level of the visibility of the transferred messages and ac-
cessibility to them two types of channels can be distinguished. The local channel
(relative to the task input) is used for the dedicated message transfer, i.e. when
messages sent by a task-producer are to be received by a single dedicated task-
consumer, and no other tasks may access the messages stored in this channel. The
external channel (relative to the task input) is used for non-dedicated message
transfer, i.e. when the message sent by a task-producer to the channel is to be
consumed by one of several task-consumers which share access to the messages
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stored in this channel. To distinguish local and external channels graphically, we
merge local channels with input ports.

Input ports which are mapped to local channels are called local input ports,
while input ports mapped to external channels are called external input ports.
The availability of messages in input channels is a property associated with input
ports. A mandatory input port is a port, which must be enabled before the task
may commence. An optional input port is a port, the enabling of which is not
compulsory for the task commencement. The output ports can also be mandatory
or optional. An output port produces one message upon task termination. A
mandatory output port always produces a message upon task termination. An
optional output port produces one message upon the task termination if and only
if a data-based condition associated with this port has been satisfied (we do not
elaborate on the data conditions, since in the context of this work we abstract
from the data perspective). We denote optional and mandatory ports as white
and dark squares respectively.

Every task has a set of properties that define the input and output logic of
the task and the behavior of the task in an active state. A task is in the active
state after it has commenced but before it has terminated. The input sets (IS)
of a task define all possible sets of input ports, enabling of which is required for
task commencement. The input selection mode (ism) of a task defines which set
of enabled input ports is to be selected from the input sets.

The message consumption mode (mcm) of a task defines how many messages
are to be consumed from the channels attached to the ports selected for con-
sumption. In minimal message consumption mode, the minimal channel capacity
is consumed from each of the channels, attached to the enabled ports selected for
the message consumption. The non-consumed messages remain in the channels
unless these channels are explicitly included in the task cancellation set (CS),
which specifies locations from which all messages are to be removed upon task
termination. In maximal message consumption mode, all messages available in the
channels attached to the enabled ports selected for the message consumption, are
consumed at once.

The output sets (OS) of a task defines a set of output ports each of which will
produce one message at the moment of task termination.

The blocking mode (blp) of output ports is a property defined for each task.
In blocked mode, output ports may send messages to the output channels if and
only if the maximal capacity of the corresponding channels has not been reached.
If the maximal capacity of the channel has been reached, the output ports are
blocked and wait until the required channel capacity becomes available. In open
mode, output ports may send messages to the channels the maximal capacity of
which has been reached, however these messages will be lost and will not modify
the state of the channels.

The cancellation set (CS) defines which parts of the net should be emptied
at the time of task termination. Emptying part of a GWF-net corresponds to
removing messages from specified locations. Removing messages from a task cor-
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responds to aborting execution of that task. We denote the cancellation set as a
dashed-line attached to a task (for an example see an example in Figure 10).

Every task has a data-based guard, the status of which influences the enabling
status of the task. Furthermore, the join logic of a given task is dependent on the
jtype parameter, which specifies whether the processing of the task inputs is local,
i.e. based on the messages currently available in the input channels, or future, i.e.
postponed until no more new messages may arrive at the task inputs.

2.2 Formal Definition

In this subsection we will formalize the notions just introduced. First, we define
a GWF-net.

Definition 1 (GWF-net). A generic workflow net (GWF-net) N is a tuple (C,
LC, EC, i, o, T, P, IP, OP, ManP, OptP, ptoc, psend, mincap, maxcap, blp, IS,
ism, OS, mcm, CS, guard, jtype, F) where:

• C is a set of channels.

• LC ⊆ C is a set of local channels.

• EC ⊆ C is a set of external channels, such that LC and EC partition C, i.e.
LC

⋂
EC = ∅ ∧ LC

⋃
EC = C.

• i ⊂ C is a set of input channels.

• o ⊂ C is a set of output channels, such that i
⋂

o = ∅.

• T is a set of tasks.

• P is a set of ports.

• IP : T → P(P ) defines a set of input ports for each task.

• OP : T → P(P ) defines a set of output ports of a task t ∈ T , such that
∀t1,t2∈T : (IP (t1)

⋃
OP (t1))

⋂
(IP (t2)

⋃
OP (t2)) 6= ∅) ⇒ t1 = t2 and IP (t)

⋂
OP (t) =

∅ for any task t ∈ T .

• ManP : T → P(P ) defines a set of mandatory ports for each task, such that
∀t∈T : ManP (t) ⊆ (IP (t)

⋃
OP (t))

• OptP : T → P(P ) defines a set of optional ports for each task, such that
∀t∈T : ManP (t)

⋂
OptP (t) = ∅ ∧ (ManP (t)

⋃
OptP (t) = IP (t)

⋃
OP (t))

• ptoc : P → C maps every port to a channel, such that a single input/output
port is mapped to a local channel, while multiple ports can be mapped to the
same external channel.

∀p1,p2∈P∀c∈C : ptoc(p1) = ptoc(p2) = c ⇒ (p1 = p2 ∨ c ∈ EC)

Let p = ptoc(p) for any p ∈ P , and generalize it for sets: X = {ptoc(x)|x ∈
X}.

• mincap : C → IN defines the minimal channel capacity. (Note that a channel
with mincap(c)=0 behaves like a reset arc.)
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• maxcap : C → (IN\{0})
⋃
{∞} defines the maximal channel capacity.

if maxcap(c) = ∞, then the channel c is unbounded.

if maxcap(c) = k, where k ∈ IN\{0}, then the channel c is bounded.

if maxcap(c) = 1 then the channel c is safe.

• blp : P 9 {blocked, open} defines the blocking mode of all output ports. Note
that dom(blp) =

⋃
t∈T OP (t).

• IS : T → P(P(P )) defines input sets for each task, specifying input ports the
enabling of which is sufficient for the task commencement, such that
(∀t∈T∀Q∈IS(t) : (Q ⊆ IP (t) ∧ (ManP (t)

⋂
IP (t) ⊆ Q)))

• ism : T → {max,min, ran} defines the input selection mode of a task.

max: select a ”maximal” set of IS(t), i.e. there is no a larger set Q of enabled
input ports in IS(t) with respect to set inclusion.

min: select a ”minimal” set of IS(t), i.e. there is no a smaller set Q of
enabled input ports in IS(t) with respect to set inclusion.

ran: select any set of enabled input ports in IS(t).

• OS : T → P(P(P )) defines output sets of a task specifying what output ports
are to produce messages upon the task termination, such that
(∀t∈T∀Q∈OS(t) : (Q ⊆ OP (t) ∧ (ManP (t)

⋂
OP (t) ⊆ Q)))

• mcm : T → {min,max} defines the message consumption mode, i.e. how
many messages are to be consumed from the enabled inputs selected according
to ism(t) for the given task t ∈ T .

min: consume the number of messages specified by the minimal capacity pa-
rameter of the channel.

max: consume all messages available in the channel.

• CS : T → P((C
⋃

T ) \ {i, o}) specifies the task cancellation set, i.e. what
additional messages are to be removed by emptying a part of the workflow.

• guard : T → Bool defines the status of the data-based task guard, which influ-
ences the enabling status of the task. (Note that the signature of this function
might be misleading, since the dependency on data elements is missing due
to the abstraction from the data perspective. Given a task t, guard(t) may
evaluate to true or false depending on the data values at the moment of
evaluation.)

• jtype : T → {local, future} specifies whether the processing of the task inputs
is local, i.e. based on the messages currently available in the input channels,
or future, i.e. postponed until no more new messages may arrive at the task
inputs.

• F = {(c, t) ∈ C×T |c ∈ IP (t)
⋃
{(t, c) ∈ T ×C|c ∈ OP (t)} is the flow relation.

• every node in the graph (C
⋃

T, F ) is on the directed path from some c1 ∈ i
to some c2 ∈ o, i.e.
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(∀x∈C
�

T∃c1∈i∃c2∈o : (c1, x) ∈ F ∗ ∧ (x, c2) ∈ F ∗)

where F ∗ is the transitive closure of F .

The Travel Agency example Let’s consider an example of booking a business
trip to illustrate the WPSL notation. The first WPSL specification presented in
Figure 8 starts with task Register which enables tasks Flight, Hotel and/or
Car. Task Pay is executed each time one of the three tasks (Flight, Hotel and
Car) completes. In this graphical notation the choice is made to use unbounded
channels, i.e. channels which are able to store an unlimited number of messages
at any moment of time. The minimal capacity mincap of all channels is set to
1, specifying that exactly one message is required from each channel to enable a
port attached to the given channel. Although channels are able to store multiple
messages, the message consumption mode mcm of all tasks is set to minimal,
meaning that exactly one message (as specified by the minimal channel capacity)
will be consumed by the corresponding ports, while the rest of the messages will
be ignored and thus kept in the channels for the subsequent task enabling.

In order to show that as the result of the execution of task Register a message
is sent to a single task (Flight, Hotel and Car) or their combination, the output
set of task Register, i.e. OS(Register), lists all set variants that may be enabled
upon the termination of the considered task.

The enabling of all tasks in Figure 8 is based on the messages currently avail-
able in the channels. This is reflected by the jtype parameter, which is set to
local.

The second WPSL specification shown in Figure 9 combines individual pay-
ments into one payment. Task Pay waits until each of the tasks enabled by
Register completes. Note that task Pay does not synchronize incoming chan-
nels if and only if a flight, a hotel or a car is booked. However, if the trip contains
two or three elements, task Pay is delayed until all have completed. This mech-
anism is reflected by the parameter jtype of task Pay which is set to future.
Moreover, to indicate that the maximal set of input ports from the ones specified
in the input sets IS(Pay) is to be selected for the message consumption, the input
selection mode ism(Pay) is set to maximal. For instance, if tasks Hotel and Car
were executed, i.e. the messages were placed in channels c4 and c6, then both
ports i5 and i7 (attached to these channels respectively) will be enabled.

The third WPSL specification shown in Figure 10 enables all three tasks
(Flight, Hotel and Car) but executes task Pay after the first task has com-
pleted. After the payment all running tasks are cancelled. In contrast to the two
earlier specifications, this WPSL specification associates a non-empty cancellation
set to task Pay. The cancellation set of task Pay contains all channels and tasks
which will be emptied the moment the task completes. Graphically the cancella-
tion set of a task is visualized as a dashed rectangle attached to the given task,
the scope of which is also indicated by the attribute CS.
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 jtype(Pay)=local
 mincap(s1)=1
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 OS(Pay)={{o7}}
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jtype(Flight)=local
 jtype(Hotel)=local
 jtype(Car)=local

mcm(Flight)=min
 mcm(Hotel)=min
 mcm(Car)=min

ism(Flight)=min
 ism(Hotel)=min
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OS(Flight)={{o4}}
 OS(Hotel)={{o5}}
 OS(Car)={{o6}}

CS(Flight)={}
 CS(Hotel)={}
 CS(Car)={}


for all output ports p: blp(p)=open


Fig. 8. Task Pay executes each time one of the three preceding tasks completes
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 OS(Car)={{o6}}
 mincap(c4)=1

CS(Flight)={}
 CS(Hotel)={}
 CS(Car)={}
 mincap(c5)=1


mincap(c6)=1

for all output ports p: blp(p)=open
 mincap(e1)=1


c4


i6
c5


i7
c6


Fig. 9. Task Pay executes only once, i.e. after all started tasks have completed
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jtype(Register)=local
 jtype(Pay)=local

mcm(Register)=min
 mcm(Pay)=min

ism(Register)=min
 ism(Pay)=min

IS(Register)={{i1}}
 IS(Pay)={{i5}}

OS(Register)={{o1},{o2},{o3},{o1,o2},{o2,o3},{o1,o3}, {o1,o2,o3}}
 OS(Pay)={{o7}}

CS(Register)={}
 CS(Pay)={c1,c2,c3,c4, Flight, Hotel, Car}


jtype(Flight)=local
 jtype(Hotel)=local
 jtype(Car)=local
 mincap(s1)=1

mcm(Flight)=min
 mcm(Hotel)=min
 mcm(Car)=min
 mincap(c1)=1

ism(Flight)=min
 ism(Hotel)=min
 ism(Car)=min
 mincap(c2)=1

IS(Flight)={{i2}}
 IS(Hotel)={{i3}}
 IS(Car)={{i4}}
 mincap(c3)=1

OS(Flight)={{o4}}
 OS(Hotel)={{o5}}
 OS(Car)={{o6}}
 mincap(c4)=1

CS(Flight)={}
 CS(Hotel)={}
 CS(Car)={}
 mincap(e1)=1


for all output ports p: blp(p)=open


CS(Pay)


Fig. 10. Task Pay executes only once, i.e. after the first task has completed
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2.3 Semantics

Definition 1 specifies the syntax of the GWF-net in mathematical terms, however
it does not give any semantics. For this purpose, we define state space and state
transitions.

The state space of GWN-net consists of a collection of messages, which serve
as wrappers for data 1. In order to deal with identical messages which may accu-
mulate in channels we use bags also known as multi-sets. The state of a channel
is represented by a multi-set of messages. In order to define the state space, we
first introduce some notations.

Notation Let’s denote input ports and output ports of a task t ∈ T as •t and
t•, and input channels and output channels of the task as •t and t• respectively,
such that:

•t = IP (t)
t• = OP (t)
•t = •t
t• = t•

A bag over alphabet A is a function from A to the natural numbers IN. For some
bag X over alphabet A and a ∈ A, X(a) denotes the number of occurrences of a in
X, and is referred to as the cardinality of a in X. [] denotes the empty bag, [a, a, b]
and [a2, b] denote the bag containing two a’s and one b. Let B(A) denote the set
of all bags over A. The sum of two bags X and Y , denoted X

⊎
Y , is defined as

[an|a ∈ A ∧ n = X(a) + Y (a)]. The difference of X and Y , denoted as X − Y , is
defined as [an|a ∈ A∧n = max((X(a)−Y (a)), 0)]. The size of the bag is denoted
as size(X) =

∑
a∈A X(a). The restriction of X to some domain D ⊆ A, denoted

as X � D, is defined as [aX(a)|a ∈ D]. Restriction binds more strongly than sum
and difference (note that the binding of sum and difference is left-associative). Bag
X is a sub-bag of Y , denoted as X ⊆ Y , iff for all a ∈ A,X(a) ≤ Y (a). X ⊂ Y
iff X ⊆ Y and for some a ∈ A,X(a) < Y (a). Note that any finite set of elements
from A also denotes a unique bag over A, namely the function yielding 1 for every
element in the set and 0 otherwise. Therefore, finite sets can be also used as bags.
If X is a bag over A and Y is a finite subset of A, then X−Y,X

⊎
Y, Y −X,Y

⊎
X

yield bags over A. Let set(x) denote a function which transforms a bag x ∈ B(A)
into a set, such that set(x) = {a ∈ A|x(a) ≥ 1}.

State space

Definition 2 (State space). Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP,
OptP, ptoc, psend, mincap, maxcap, blp, IS, ism, OS, mcm, CS, guard, jtype, F)
be a GWF-net. A workflow state s is a multi-set over the channels and tasks, i.e.
s ∈ S, where S = B(C

⋃
T ) is the state space of N .

1 Note that in this specification we do not consider the data perspective.
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Whenever there is a need to refer to a set of locations (i.e. either channels
or internal task states) marked in state s by messages, we will use the function
set(s) = {x ∈ C

⋃
T |x ∈ s}.

Let’s consider the task lifecycle visualized in Figure 11. This figure shows the
internal structure of a task t. Note that in a state s ∈ S, there is a token in Activet

if and only if t ∈ S. A task is considered to be active if its internal state is marked
by a message, i.e. after the task has commenced but before it has terminated.

Active_t


Task_t


Enter_t
 Exit_t


Fig. 11. The internal task states

Definition 3 (Task enabling). Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP,
OptP, ptoc, psend, mincap, maxcap, blp, IS, ism, OS, mcm, CS, guard, jtype, F)
be a GWF-net. The boolean function enable(t, s) evaluates to true if and only if
for a task t ∈ T in state s ∈ S the following set of conditions is satisfied:

– The task guard is satisfied:

guard(t) = true

– One of the input sets is enabled:

(∃Q∈IS(t) : Q ⊆ {p ∈ •t|s(p) ≥ mincap(p)})

– Let S′ be a set of states reachable from s (assuming some reachability relation).
If jtype(t) = future, then 6 ∃s′∈S′s� (•t) ⊂ s′� (•t).

Let’s clarify the semantics of the message consumption/production using a task
with multiple input and output ports connected to single external input and
output channel respectively. This situation is depicted in Figure 12.
To illustrate the semantics, we consider two cases:

• If IS(Task1) = {{i1}, {i2}} and OS(Task1) = {{o1}, {o2}}, then a single
message is consumed from the channel c1 and a single message is produced
to channel c2.

• However, if IS(Task1) = {{i1, i2}} and OS(Task1) = {{o1, o2}}, then there
is an asymmetry in the message consumption/production, i.e. a single message
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Task 1


i1
 jtype

blp

mcm

ism

IS

OS


o1


i2
 o2


c1
 c2


Fig. 12. Message consumption/production

is consumed from channel c1 and two messages are produced to channel c2.
Note that such an asymmetry has to do with rules for task enabling, message
consumption and message production. If the minimal capacity of the channel
c1 has been reached, both input ports i1 and i2 of Task 1 become enabled. At a
time of the task activation, the minimal capacity of the channel c1 is consumed
once by input ports (either i1 or i2), while upon the task termination both
output ports produce a message to the outgoing channel c2.

Enabling of a task t with jtype(t) = future and multiple inputs which need to be
synchronized (we will refer to such tasks as OR − joins) needs to be postponed
until no more messages can arrive resulting in enabling of a larger number of
input ports of the OR-join. Since enabling of the OR-join depends on the possible
future states, its semantics is non-local. Non-locality of the semantics of the OR-
join has been a subject for a debate, and as a consequence several approaches
to handle non-locality semantics have been proposed. In [2] Kindler, Desel and
van der Aalst address the problem of non-local semantics in the context of EPCs
demonstrating that there is no sound formal semantics for EPCs that is fully
compliant with the informal semantics of EPCs. In [15, 16] Kindler defines a non-
local semantics of EPCs using techniques from fixed point theory and a pair of
two corresponding transition relations. The proposed technique is claimed to be
applicable for formalizing all kinds of non-local semantics. In [29] Wynn, Edmond,
van der Aalst and ter Hofstede propose a general and formal approach to OR-
joins in workflow using Reset-nets. The authors examine the concept of the OR-
join in the context of the workflow language YAWL and propose an algorithmic
approach towards determining OR-join enablement. Because the issue of non-local
semantics of OR-joins is a subject for an investigation on its own, we consider
this issue to be outside of the scope of this work. Thus, we assume that a suitable
approach for dealing with non-local semantics of OR-joins is known. Therefore,
we assume some S′ in Definition 3, i.e. S′ is the set of reachable states and if
jtype(t) = future, then the enabling of t depends on this set S ′.

State transitions Let’s formalize the transitions possible in a given state by
means of binding functions bindingenter and bindingexit corresponding to the
task commencement, which brings a task from the disabled state to the active
state, and the task termination, which brings a task from an active state back to
the disabled state, respectively.
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Definition 4. Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP, OptP, ptoc, psend,
mincap, maxcap, blp, IS, ism, OS, mcm, CS, guard, jtype, F) be a GWF-net. The
boolean function bindingenter(t, cons, prod, s) evaluates to true if and only if the
transition enter can occur for a task t ∈ T in the state s ∈ S, while consuming the
bag of messages cons and producing the bag of messages prod, and the following
conditions are satisfied:

– The task t is enabled in the given state s:

enable(t, s) = true

– Messages to be consumed are present in the state:

cons ⊆ s

– There exists a set Q ∈ IS(t) such that:

• Messages are consumed from inputs of the task:

set(cons) = Q

• If the input selection mode is set to maximal, then a maximal set of enabled
input ports of IS(t) is selected, i.e. there is no a bigger set with respect to
set inclusion:

if ism(t) = max, then∀Q′∈IS(t)(Q ⊆ Q′) ⇒ ∃p∈Q′\Qs(p) < mincap(p)

• If the input selection mode is set to minimal, then a minimal set of enabled
task inputs of IS(t) is selected for the message consumption, i.e. there is
no a smaller set with respect to the set inclusion:

if ism(t) = min, then (∀Q′∈IS(t) : Q′ 6⊂ Q)

• If the input selection mode is set to random, then any set of enabled task
inputs of IS(t) can be selected for the message consumption.

– One message is created for the active task state:

prod = [t]

– The task is not active yet:

t /∈ s

– The number of messages consumed from the selected task inputs is determined
by the message consumption mode of the considered task. In the minimal mes-
sage consumption mode, the number of messages required for enabling of the
input is consumed, while the rest of the messages remain in the input chan-
nels. In the maximal message consumption mode all messages contained in
the channels of the selected input ports are consumed. For all c ∈ set(cons):

(mcm(t) = min) ⇒ (cons(c) = mincap(c))

(mcm(t) = max ) ⇒ (cons(c) = s(c))
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Definition 5. The boolean function bindingexit(t, cons, prod, s) evaluates to true
if and only if the transition exit can occur for a task t in state s, while consuming
the bag of messages cons and producing the bag of messages prod, and the follow-
ing conditions are satisfied:

– Task t is active in state s:

t ∈ s

– One message is consumed from the internal task state:

cons = [t]

– There exists a set Q ∈ OS(t) such that potentially one message is produced for
each of the selected output ports and the maximal channel capacity is respected
(cf. blocking mode):

prod′ = [p1|p ∈ Q]

if blp(t) = blocked, then prod = prod′ and ∀c∈t•(s
⊎

prod)(c) ≤ maxcap(c)

if blp(t) = open, then ∀c∈t•prod(c) = min(prod′(c), (maxcap(c) − s(c)))

Definition 6. The boolean function bindingCS
exit(t, cons, prod, s) yields true if and

only if there exists a cons′ such that bindingexit(t, cons′, prod, s) yields true and
for any x ∈ C

⋃
T :

cons(x) = (s − cons′)
⋃

prod(x) if x ∈ CS(t)

cons(x) = cons′(x) if x /∈ CS(t)

I.e., messages are removed from all input channels of task t and from its cancella-
tion set. This implies cancellation of tasks in the cancellation set which have not
yet completed.

Definition 7. Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP, OptP, ptoc, psend,
mincap, maxcap, blp, IS, ism, OS, mcm, CS, guard, jtype, F) be a GWF-net. The
Boolean function binding(t, cons, prod, s) yields true if and only if any of the
following conditions holds:

- The enter part of a task is enabled:

bindingenter(t, cons, prod, s)

- The exit part of a task is enabled:

bindingCS
exit(t, cons, prod, s)

Definition 8. Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP, OptP, ptoc, psend,
mincap, maxcap, blp, IS, ism, OS, mcm, CS, guard, jtype, F) be a GWF-net, and
s1 and s2 two workflow states of S. s1 � s2 if and only if there are t ∈ T ,
cons, prod ∈ S such that binding(t, cons, prod, s1) and s2 = (s1 − cons) ] prod.
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� defines a transition relation on the states of the given workflow. The re-
flexive transitive closure of � is denoted �∗ and R(s) = {s′ ∈ S|s �∗ s′} is the
set of states reachable from state s.

The state space S and transition relation � define a transition system (S,�)
for a given GWF-net. This completes the formalization of GWF-nets. Using this
formalization we can also reason about the correctness of GWF-nets. For example,
we can generalize the well-known soundness property as shown in Definition 9.

Definition 9 (Soundness). Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP,
OptP, ptoc, psend, mincap, maxcap, blp, IS, ism, OS, mcm, CS, guard, jtype, F)
be a GWF-net.

- N has the option to complete iff for any state s ∈
⋃

c∈i R([c]) : ∃c∈o[c] ∈ R(s).

- N has no dead tasks iff for any t ∈ T there is a state s ∈
⋃

c∈i R([c]) such
that t ∈ set(s).

- N has proper completion iff for any state s ∈
⋃

c1∈i R([c1]): ∀c2 ∈ o : (s ≥ [c2])
⇒(s = [c2]).

N is sound iff N has the option to complete, has no dead tasks, and has proper
completion.

Note that three GWF-nets used in the Travel Agency example have option
to complete and have no dead tasks. In contrast to the GWF-nets depicted in
Figures 9 and 10, the GWF-net in Figure 8 has no proper completion because of
multiple messages produced by task Pay to the end channel e1.

We could also formally define multiple instances of a task as it has been done
in [3], however we chose not complicate things any further. In the next section,
we consider control-flow patterns involving multiple instances of a task and for
this we only introduce a graphical notation while abstracting from the formal
definition.

3 Analysis of the classical Workflow Control Patterns

In this section, we analyze the classical set of control-flow patterns using the
notation of WPSL. Each pattern can be addressed in several ways, depending
on the context in which the given pattern is applied. Therefore, we offer the
default WPSL notation, which captures the essence of the pattern; then we list
variation points to illustrate alternative configurations of the considered pattern.
Furthermore, for each pattern we show the precise notation adopted by Staffware
and Oracle BPEL PM, and how those can be mapped to WPSL.
The list of variation points is shown below:

• Channel characteristics: the channel capacity defines how many messages
the channel may store at once; the channel positioning specifies whether a
local or external type of a channel can be used for the message transfer.

• Blocking of output ports: specifies whether output ports may produce
messages in the open or blocked mode.
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• Message consumption mode: defines whether all messages available in
the channel are consumed at once (the maximal mode) or only the minimal
channel capacity is consumed while leaving the rest of the messages in the
channel (the minimal mode).

• Input selection mode: specifies whether the minimal, maximal or random
set of enabled input ports from the perspective of the set inclusion can be
selected for the message consumption.

• Input sets: specifies the logic over the input ports enabling of which is suf-
ficient for task enabling.

• Output sets: specifies the logic over the output ports which will produce
messages at a time of the task termination.

• Cancellation set: specifies tasks and channels from which messages must be
removed at the time of the task termination.

3.1 WP1 -Sequence

Description An activity in a workflow process is enabled after the completion
of another activity in the same process. 2

Selected WPSL specification Figure 13 shows the Sequence pattern. In terms
of WPSL task t2 is executed after the execution of task t1. Messages are
transferred via a safe external channel c1. The blocking mode of an output
port o1 of task t1 is chosen to be open to allow task t1 to complete if the
channel c1 is non-empty. The enabling of task t2 is based on the messages
currently available in the channel, i.e. jtype is set to local. The messages
are consumed in the minimal message consumption mode. The choice of the
input selection mode for this net is irrelevant, since the number of the input
ports is limited to one, thus no option for the input selection is available.
However, to make the specification complete, ism of t2 is set to minimal. For
the sake of convenience input sets of task t1 and output sets of task t2 which
may vary without influencing the behavior of a pattern are omitted in this
net and in other nets considered further in this paper. This is one of many
possible interpretations of the pattern.

Alternative WPSL specifications The variation points based on which alter-
native configurations of the Sequence pattern can be based are listed below:

• Channel characteristics. Channel capacity : the maximal channel ca-
pacity can be increased from safe to bounded or unbounded, depending
on the number of messages the channel is able to store at once. If the
minimal channel capacity mincap(c1) = 1 does not change, this notation
is equivalent to the main notation. Note however, that by increasing the
minimal channel capacity, the enabling of the input port connected to this

2 The term ‘activity’ used in [5], from which the pattern definition is cited, should be
interpreted as ‘task’. We omit repeating this remark for the rest of the patterns, thus
assuming that terms ‘task’ and ‘activity’ can be used interchangeably.
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blp(o1) = open

OS(t1)={{o1}}

CS(t1)={}


jtype(t2)= local

mcm(t2)= min

ism(t2)=min

IS(t2)={{i1}}

CS(t2)={}


c1


Channel c1 is safe, i.e.

maxcap(c1)=1

mincap(c1)=1


Fig. 13. WP1 - Sequence. Selected WPSL specification.

channel would be delayed until the specified minimal channel capacity is
reached.
Channel positioning : external channel can be used with an additional re-
quirement that no other tasks than the dedicated one are connected to
this channel. However, for dedicated message transfer, the local channel
type can be selected.

• Blocking of output ports. Output port o1 of task t1 can be set as open
or blocked. If the safe channel c1 is not empty, the open output port o1 of
task t1 is allowed to produce a message, however this message will be lost.
If the output port is in the blocked mode, the completion of task t1 will
be postponed until the capacity of the channel c1 is freed. Note that if
the maximal capacity of the channel c1 is unbounded, the output port o1
of task t1 is always open and is never blocked since the maximal capacity
of the channel cannot be reached.

• Message consumption mode. In the minimal message consumption
mode the number of messages required to enable the channel (equivalent to
the minimal channel capacity) is consumed, the rest of the non-consumed
messages are stored in the channel for the subsequent task execution. To
consume all messages available in the channel, the message consumption
mode should be set to maximal.

Note that the initial pattern definition in [5] does not specify such attributes as
the message consumption mode, the blocking of output ports, and the channel
capacity, which makes the pattern subject to multiple interpretations.

Staffware implementation The Staffware model of the Sequence and its cor-
responding WPSL interpretation are presented in Figure 14 (a) and (b) re-
spectively. The behavior of this pattern can be described by means of the
WPSL attributes as follows. Messages in Staffware are transferred via a safe
channel (c1 is chosen to be safe, i.e. maxcap(c1) = 1). The enabling of task B
is based on the messages available locally (jtype(B) = local). The consump-
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tion of messages is performed in the minimal message consumption mode
(mcm(B) = min). In Staffware messages can be sent to a channel even if the
capacity of the channel has been reached. The second message will cancel the
first one. Although Staffware has no notion of ports, the described behavior
corresponds to the open mode of the output port (blp(o1) = open) in the
WPSL terms.

o1


A


jtype

blp

mcm

ism

IS

OS

CS


B


i1

jtype

blp

mcm

ism

IS

OS

CS


CS(A)={}
 jtype(B)= local
 mincap(c1)=1

OS(A)= {{o1}}
 mcm(B)= min
 maxcap(c1)=1

blp(o1) = open
 CS(B)= {}


IS(B)= {{i1}}


c1


a)
 b)


 


Fig. 14. Staffware implementation of WP1.

Oracle BPEL PM implementation The 〈sequence〉 construct presented in
Figure 15, which also corresponds to the BPEL code listed below, allows
the definition of the collection of tasks to be performed in lexical order.
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CS
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OS(A)= {{o1}}
 jtype(B)= local
 mincap(c1)=1

CS(A)={}
 IS(B)= {{i1}}
 maxcap(c1)=1


mcm(B)= min

ism(B)=min

CS(B)= {}


c1


a)
 b)


Fig. 15. Oracle implementation of WP1.

<sequence name="Sequence_1">

<empty name="A"/>
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<empty name="B"/>

</sequence>

We will omit pieces of the XML-code further in this document, since they
get larger for more complex patterns, and OracleBPEL diagrams adequately
reflect the structure of the BPEL code.

The fact that BPEL is structured and acyclic, implies that it does not facilitate
reasoning about attributes such as the input selection mode and the blocking
mode of the ports. Activity B is enabled as soon at it is triggered by a message,
therefore jtype of the corresponding WPSL task is set to local. It is sufficient to
have a single trigger for enabling of a task, therefore the message consumption
mode of task B is set to minimal.

3.2 WP2 -Parallel Split

Description A point in the workflow process where a single thread of control
splits into multiple threads of control which can be executed in parallel, thus
allowing activities to be executed simultaneously or in any order.

Selected WPSL specification Figure 16 shows the Parallel Split pattern.
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o2


OS(t1)={{o1,o2}}

CS(t1)={}


jtype(t2)= local

mcm(t2)= min

ism(t2)=min

IS(t2)={{i1}}

CS(t2)={}


jtype(t3)= local

mcm(t3)= min

ism(t3)=min

IS(t3)={{i2}}

CS(t3)={}


for all output ports p:

blp(p)=blocked


mincap(c1)=1

maxcap(c1)=1

mincap(c2)=1

maxcap(c2)=1


Fig. 16. WP2 - Parallel Split. Selected WPSL specification.

The execution of task t1 enables execution of tasks t2 and t3. As a result of
the execution of task t1 messages must be produced for two outgoing channels
c1 and c2, therefore ports o1 and o2 are denoted as mandatory (see the output
set of task t1). Since tasks t2 and t3 are independent of each other, messages
to them are sent via dedicated channels. The enabling of tasks t2 and t3 is
based on the local availability of the messages in channels c1 and c2, which
are chosen to be safe.
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Alternative WPSL specifications The variation points based on which alter-
native configurations of the Parallel Split pattern can be based are listed
below.

• Channel characteristics. Channel capacity : the capacity of channels c1
and c2 can be bounded or unbounded depending on the number of mes-
sages the channel is allowed to store at once. To specify that multiple
messages are required to enable an input port(s) of a certain task, the
minimal capacity of the corresponding non-safe channels must be set re-
spectively.
Channel positioning : instead of local channels, external channels can be
used with an additional requirement that access to the messages stored
in the channel is limited to a single dedicated task.

• Blocking of output ports. Depending on the type of channels used,
output ports can be set to blocked or open mode. Setting the blocked
mode for the ports producing messages to unbounded channels does not
make sense, since the capacity of the channel will never be reached and
an output port will never be blocked. However, both modes are applicable
in the context of safe and bounded channels.

• Input selection mode. Since the core logic of the Parallel Split pattern
is defined in the task t1, the setting of ism is less relevant for this task.
Tasks t2 and t3 have a single input port, and there is no option for input
selection. All modes for input selection are equivalent when applied to
a task with a single input port. In the remainder of this paper, we will
avoid further discussion on input selection mode for tasks with single input
ports. However, to make the specification complete, the input selection
mode for such tasks will be set to minimal.

• Message consumption mode. In minimal message consumption mode,
the number of messages required to enable the channel (equivalent to the
minimal channel capacity) is consumed, the rest of the non-consumed
messages are stored in the channel for the subsequent task execution. To
consume all messages available in the channel, the message consumption
mode should be set to maximal.

Note that the original pattern definition in [5] does not specify the blocking
mode of the output ports or any of the other issues mentioned above.

Staffware implementation Staffware supports the Parallel Split pattern di-
rectly as illustrated in Figure 17 (a) by means of a Step object with multiple
outgoing arcs. Figure 17 (b) depicts the corresponding WPSL interpretation.
Similar to the description of the Sequence pattern, task A corresponding to
Step A is characterized by the open mode of the output ports, enabling based
on the local message availability and the minimal message consumption mode.
The split logic of Step A, which propagates a message to Steps B and C, is
incorporated into the output set of the WPSL task A.
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Fig. 17. Staffware implementation of WP2.

Oracle BPEL PM implementation The Parallel Split pattern is implemented
in Oracle BPEL PM via the 〈flow〉 construct presented in Figure 18 (a). The
corresponding WPSL interpretation is shown in Figure 18 (b). Note that the
〈flow〉 construct is of structured nature, therefore it supports the Synchro-
nization pattern. The WPSL model can be logically decomposed into two
patterns. As such, tasks Start Flow, A and B constitute the Parallel Split
pattern, while the Synchronization pattern is composed out of tasks A, B,
and End F low. The split and join logic associated with the start and the end
of the 〈flow〉 is reflected by the output set and input sets of the dummy-
tasks Start F low and EndF low. To denote that both branches in the 〈flow〉
construct must complete the input selection mode ism(EndF low) is set to
maximal. The rest of the settings are the same as described in the Sequence
pattern. Since execution of tasks in Oracle BPEL PM may abort, as a result
of this no messages will be produced by these tasks. To capture this semantics
and avoid blocking of the synchronizing task, the input ports of task EndF low
must be made optional and the join logic must take into account future possi-
ble states. If all tasks in parallel branches fail to execute, no synchronization
will be performed. Oracle BPEL PM handles this issue by propagating true
and false tokens via all branches indicating the status of the task execution.
An equivalent behavior is obtained in WPSL by direct connection between
the start and the end of the flow.

3.3 WP3 -Synchronization

Description A point in the workflow process where multiple parallel subpro-
cesses/activities converge into one single thread of control, thus synchroniz-
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Fig. 18. Oracle implementation of WP2/WP3.

ing multiple threads. It is an assumption of this pattern that each incoming
branch of a synchronizer is executed only once.

Selected WPSL specification Figure 19 depicts the Synchronization pattern.
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Fig. 19. WP3 - Synchronization. Selected WPSL specification.

Task t3 is enabled after the completion of both tasks t1 and t2. Messages
produced by each of tasks t1 and t2 are sent to task t3 via dedicated channels.
In order to show that inputs from both channels are required for enabling task
t3, both input ports i1 and i2 of task t3 are chosen to be mandatory (see the
input sets of task t3). Task t3, when enabled, consumes one message from
each incoming channel as indicated by the minimal message consumption
mode and safe type of the channels. The enabling of task t3 is based on the
messages currently available in the channels.
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Alternative WPSL specifications The points of variation on which alterna-
tive configurations of the Synchronization pattern can be based are the same
as for the Parallel Split pattern. Note that the initial pattern definition in [5]
does not give any indication about the blocking mode of output ports.

Staffware implementation The Synchronization pattern in Staffware is di-
rectly supported by the Wait object, depicted in Figure 20 (a). The cor-
responding WPSL interpretation is shown in Figure 20 (b). It is a feature of
the Wait object to wait for all inputs which still may arrive, or in the context
of a loop to execute immediately if an input associated with the left arc is
available and no top inputs may become available any more. To specify this
behavior input sets together with the input selection mode are set for the
maximal input selection.
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Fig. 20. Staffware implementation of WP3.

Oracle BPEL PM implementation Due to the structured nature of activities
in Oracle BPEL, the Synchronization pattern cannot be separately depicted
but is included in the 〈flow〉 construct illustrated in Figure 18. The WPSL
description given for the Parallel Split pattern is also valid in the context of
this pattern.

3.4 WP4 -Exclusive choice

Description A point in the workflow process where, based on a decision or work-
flow control data, one of several branches is chosen.

28



Selected WPSL specification Figure 21 demonstrates the Exclusive Choice
pattern.
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Fig. 21. WP4 - Exclusive choice. Selected WPSL specification.

Task t1 is followed either by task t2 or task t3. To show that the choice is to
be made between task t2 and task t3, output ports of task t1 are selected to
be optional and output sets of task t1 are made disjoint. A selected output
port performs a dedicated transfer to a task via a safe channel. The enabling
of task-recipients is based on the local availability of messages in the incoming
channels.

Alternative WPSL specifications The points of variations on which alterna-
tive configurations of the Exclusive Choice pattern can be based are listed
below.

• Channel characteristics. Channel capacity : The capacity of channels
c1 and c2 can be bounded or unbounded depending on the number of
messages the channel is allowed to store at once. To specify that multiple
messages are required to enable an input port(s) of Task 3 the minimal
capacity of the corresponding non-safe channel must be set accordingly.
Channel positioning : local channels, external channels or their combina-
tion can be used with an additional requirement that access to the mes-
sages stored in the external channel is limited to a single task.

• Blocking of output ports. Depending on the type of the channels used,
output ports can be set to the blocked or open mode. The blocked mode
is to be applied in combination with safe and bounded channels, while the
open mode can be used with any kind of channels.
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• Message consumption mode. The minimal and maximal message
consumption modes can be used interchangeably to guarantee that the
minimal or the full channel capacity is consumed by the ports attached
to this channel.

The initial pattern definition does not specify the blocking mode of the output
ports and the message consumption mode.

Staffware implementation Staffware supports this pattern by means of the
binary Decision object illustrated in Figure 22 (a). The corresponding WPSL
model is shown in Figure 22 (b). To indicate the binary choice between steps
B and C, output sets of task A are made disjoint. The output ports of task
A produce messages in the open mode.
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for all output ports p:
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for all channels c:
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Fig. 22. Staffware implementation of WP4.

Oracle BPEL PM implementation Oracle BPEL PM supports this pattern
by means of the 〈switch〉 construct, which selects the first case. If no case
can be selected, the default branch is chosen. Note that due to the structured
nature of the considered model, the Exclusive Choice pattern is combined
with the Simple Merge pattern. Figure 23 (a) depicts the 〈switch〉 construct,
and Figure 23 (b) shows the corresponding WPSL interpretation. WPSL tasks
Start Switch and EndSwitch define the split and merge logic of the patterns.
To denote that a single branch is to be chosen in the 〈switch〉 construct, the
output sets of the WPSL task Start Switch are made exclusive. Similarly, the
input sets of task 〈EndSwitch〉 are made disjoint. Note that a single message
from a single branch needs to be received in order to complete the 〈switch〉
properly.

3.5 WP5 -Simple merge

Description A point in the workflow process where two or more alternative
branches come together without synchronization. It is an assumption of this
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Fig. 23. Oracle implementation of WP4.
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pattern that none of the alternative branches is ever executed in parallel (if
this is not the case, then see WP8 (Multi-merge) or WP9 (Discriminator)).

Selected WPSL specification Figure 24 demonstrates the Simple Merge pat-
tern.
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Fig. 24. WP5 - Simple merge. Selected WPSL specification.

Task t3 is enabled after either task t2 or task t3 is executed. Tasks t1 and t2
are connected to task t3 via an external safe channel c1. A message produced
by an output port of either task t1 or t2 enables an input port i1 of task t3.
This behavior is reflected by the minimal message consumption mode and the
minimal channel capacity limited to 1. Enabling of the input port i1 of task
t3 is based on the messages currently available in the channel.

Alternative WPSL specifications The points of variations based on which
alternative configurations of the Simple Merge pattern can be based are listed
below.

• Channel characteristics. Channel capacity : The capacity of channel c1 can
be bounded or unbounded depending on the number of messages the channel
is allowed to store at once. To specify that multiple messages are required
to enable an input port of task t3 the minimal capacity of the corresponding
non-safe channel must be set respectively.

• Blocking of output ports. Output ports can be set to the blocked or open
mode to be used in combination with bounded or any type of channels re-
spectively.

• Message consumption mode. In minimal message consumption mode the
number of messages required to enable the channel (equivalent to the minimal
channel capacity) is consumed, the rest of the non-consumed messages are
stored in the channel for subsequent task execution. To consume all messages
available in the channel, the message consumption mode should be set to
maximal.
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Staffware implementation Staffware supports this pattern directly via Step
objects in the configuration shown in Figure 25(a). The corresponding WPSL
interpretation is shown in Figure 25(b). Note that the enabling of task C is
based on the messages locally available in the safe channel c1. Step C will
be executed only once even if steps A and B would complete simultaneously,
which is reflected by the open mode of the blocking mode of the outgoing
channels belonging to the corresponding WPSL tasks A and B.
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Fig. 25. Staffware implementation of WP5.

Oracle BPEL PM implementation Oracle BPEL PM supports this pattern
directly using the 〈switch〉 construct depicted in Figure 23. Note that since
this construct is of structured form, in Oracle BPEL PM the Simple Merge
pattern is always used in combination with the Exclusive Choice pattern.
This also guarantees that the pattern assumption that none of the alternative
branches (in the 〈switch〉 construct) ever executes in parallel. The description
of WPSL for the 〈switch〉 construct in the Exclusive Choice pattern is also
valid in the context of the Simple Merge pattern.

3.6 WP6 -Multiple Choice

Description A point in the workflow process where, based on a decision or work-
flow control data, a number of branches are chosen.

Selected WPSL specification Figure 26 illustrates the Multiple Choice pat-
tern.
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Fig. 26. WP6 - Multiple Choice. Selected WPSL specification.

After executing task t1, task t2 or task t3 is or both are executed. The actual
logic associated with the multiple choice is encapsulated in the output sets of
task t1, which specified that either one of two optional output ports or both
are selected for the message production. To make the distinction between
the execution pathes following task t1, the channels c1 and c2 are chosen to
be dedicated (local). The channels are safe and messages stored in them are
consumed in the minimal message consumption mode by task t2 and task t3.
The setting of the input selection mode is omitted, since no option exists for
selecting an input for tasks t2 and t3. The enabling of these tasks is based
on the messages currently available in the channels. Note that the original
pattern definition given in [5] does not consider the blocking mode of output
ports. In the selected specification this parameter has been set to open.

Alternative WPSL specifications The points of variations describing alter-
native configurations of the Multiple Choice pattern are listed below.

• Channel characteristics. Channel capacity : The capacity of channels c1 and
c2 can be increased and set to bounded or unbounded depending on the
number of messages the channel is allowed to store at once. To specify that
multiple messages are required to enable an input port of tasks t2 and t3 the
minimal capacity of the corresponding non-safe channels must be adjusted
respectively.

• Blocking of output ports. Depending on the type of the channels used,
output ports can be set to the blocked or open mode.

• Message consumption mode. For safe channels, the minimal and maximal
message consumption modes are equivalent. If the channels in use are bounded
or unbounded, the minimal or maximal message consumption modes must be
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selected to specify the limited or full message consumption from the channel
respectively.

Staffware implementation Staffware does not support this pattern directly.
However, it can be implemented using a series of Decision steps which are
binary and correspond to exclusive OR-splits (see [24]).

Oracle BPEL PM implementation Oracle BPEL supports this pattern by
means of the 〈flow〉 construct and links. Links are associated with every
branch. Branches become enabled when their transition conditions have been
satisfied. Note that the graphical notation of Figure 27 (a) does not show links
between the branches of the 〈flow〉, they are listed in the BPEL code. The
ordering of activities by means of links is reflected in the logic defined over
the input and output sets of the corresponding tasks belonging to the WPSL
specification depicted in Figure 27 (b).

<flow name="Flow_1">

<links>

<link name="Link14"/>

<link name="Link13"/>

<link name="Link12"/>

</links>

<sequence name="Sequence_4">

<assign name="Assign_1">

<source linkName="Link12" transitionCondition=""/>

<source linkName="Link13" transitionCondition=" "/>

<source linkName="Link14" transitionCondition=" "/>

</assign>

</sequence>

<sequence name="Sequence_3">

<target linkName="Link13"/>

<assign name="Assign_4">

...

</assign>

</sequence>

<sequence name="Sequence_2">

<target linkName="Link12"/>

<assign name="Assign_3">

...

</assign>

</sequence>

<sequence name="Sequence_1">

<target linkName="Link14"/>

<assign name="Assign_2">

...

</assign>

</sequence>

</flow>
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Fig. 27. Oracle implementation of WP6.
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3.7 WP7 -Synchronizing Merge

Description A point in the workflow process where multiple paths converge into
one single thread. If more than one path is taken, synchronization of the active
threads needs to take place. If only one path is taken, the alternative branches
should reconverge without synchronization. It is an assumption of this pattern
that a branch that has already been activated, cannot be activated again while
the merge is still waiting for other branches to complete.

Selected WPSL specification Figure 28 demonstrates the Synchronizing Merge
pattern.
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Fig. 28. WP7 - Synchronizing Merge. Selected WPSL specification.

Task t3 is executed after executing task t1 or task t2 or both. In order to
specify that task t3 should wait until no more messages may arrive to the task
inputs, jtype parameter of this task is set to future. Since several sets from
the input set of task t3 can be enabled simultaneously, the largest set must be
selected, therefore the input selection mode is set to maximal. In combination
with safe channels, the message consumption mode set to minimal, ensures
that only one message must be consumed by each enabled port.

Alternative WPSL specifications The points of variation describing alterna-
tive configurations of the Synchronizing Merge pattern are listed below.

• Channel characteristics. Channel capacity : The capacity of channels c1 and
c2 can be increased and set to bounded or unbounded depending on the num-
ber of messages the channel is allowed to store at once. To specify that multiple
messages are required to enable an input port(s) of task t3 the minimal ca-
pacity of the corresponding non-safe channel must be set respectively.
Channel positioning : local channels can be replaced by external ones with
an additional requirement that access to the messages stored in the external
channel is limited to a single (dedicated)task.
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• Blocking of output ports. Depending on the type of the channels used,
output ports can be set to the blocked or open mode.

• Message consumption mode. In the context of safe channels, the minimal
and maximal message consumption modes are equivalent. If the channels in
use are bounded or unbounded, the minimal or maximal message consumption
modes must be selected to specify the limited or full message consumption
from a channel respectively.

Staffware implementation Staffware does not support this pattern directly.
However, similar behavior can be obtained by combining Decision constructs
and complex routers on the inputs of the Wait object as it is shown in [24].

Oracle BPEL PM implementation Oracle BPEL PM supports this pattern
via 〈flow〉 and links as described for the Multiple Choice pattern (see Fig-
ure 27). Links with transition conditions are used to define which branches
within the 〈flow〉 construct are to be selected. The synchronization of branches
is done by the 〈flow〉 activity. The 〈flow〉 activity will only complete when
each of its sub-activities has either completed or has been skipped. The con-
tinuation of the process after the synchronizing merge can be placed after the
〈flow〉 activity.

3.8 WP8 -Multiple Merge

Description A point in a workflow process where two or more branches re-
converge without synchronization. If more than one branch is activated, the
activity following the merge is started for every activation of every incoming
branch (including concurrent instances).
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Fig. 29. WP8 - Multiple Merge. Selected WPSL specification.

Selected WPSL specification Figure 29 illustrates the Multiple Merge pat-
tern. Task t3 is executed each time the execution of task t1 or task t2 com-
pletes. Messages arriving to the inputs of task t3 are aggregated in the un-
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bounded channel c1, while task t3 is in the active state, thus allowing the task
to be enabled and executed again. Since multiple messages can be stored in
the channel c1 and each of the messages must enable task t3, the message
consumption mode of this task is set to minimal. The minimal capacity of the
channel, which is limited to 1, is consumed by the input port i1 of task t3
each time any of tasks t1 or t2 completes. Note that output ports of task t1
and task t2 are open and never become blocked, since the maximal capacity
of the unbounded channel c1 can never be reached.

Alternative WPSL specifications The points of variations describing alter-
native configurations of the Multiple Merge pattern are listed below.

• Channel characteristics. Channel capacity : The capacity of the channel
c1 can be bounded to the maximal number of messages the channel is
able to store at once. It may be necessary to amend the blocking type of
the output ports of task t1 and task t2 to specify whether the tasks are
allowed to complete if the maximal capacity of the outgoing channels has
been reached. The minimal channel capacity can be also modified, which
will have an influence on the status of the enabling of task t3.

• Input Sets. If the external channel c1 is replaced by two local channels
for a dedicated transfer of messages from tasks t1 and t2, the input sets
of task t3 should be made disjoint. To guarantee that task t3 will be
executed upon enabling of each port, but not once if both input ports
are enabled, the input consumption mode should be set to minimal and
messages should be consumed from the channels in the minimal message
consumption mode.

Staffware implementation This pattern is not supported by Staffware directly.
However, similar behavior can be obtained by duplicating task C and placing
it on two branches with tasks A and B respectively as it is shown in [24].

Oracle BPEL PM implementation Oracle BPEL PM offers the facilities to
implement this pattern by means of an event handler attached to the scope
in which multiple branches reside. In every branch enclosed in the 〈flow〉
construct, an 〈invoke〉 activity should be placed to invoke a synchronous
dummy service. The response message produced by this dummy service needs
to be processed by an event handler attached to the scope outer of the 〈flow〉
construct. This results in an event handler being executed each time a branch
completes. For some reason, the event handlers attached to the process scope
seem to be unable to respond to messages. Since the desired behavior hasn’t
been achieved by means of event handlers, this pattern is not considered to
be supported. Further details on this issue are available in [18].

3.9 WP9a -Discriminator

Description The discriminator is a point in a workflow process that waits for
one of the incoming branches to complete before activating the subsequent
activity. From that moment on it waits for all remaining branches to complete
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and “ignores” them. Once all incoming branches have been triggered, it resets
itself so that it can be triggered again (which is important otherwise it could
not really be used in the context of a loop).

Selected WPSL specification Figure 30 illustrates the default WPSL configi-
ration of the Discriminator pattern.
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Fig. 30. WP9a - Discriminator. Selected WPSL specification.

Task t3 is executed after task t1 or task t2 completed. When task t3 terminates
it removes messages inside of the tasks and in channels, thus disabling any
remaining triggers. After the messages from the cancellation set are removed,
task t3 can be triggered again. Although multiple messages can be placed
concurrently on the input channel of task t3, only one message is consumed
from it. This is reflected by setting the minimal channel capacity to 1 and the
message consumption mode to minimal.

Alternative WPSL specifications The points of variation describing alterna-
tive configurations of the Discriminator pattern are listed below.

• Channel characteristics. Channel capacity : The capacity of the channel
c1 can be bounded to the maximal number of messages the channel is able
to store at once. If the capacity of the channel is bounded, the minimal
message capacity of the channel should be set to the number of messages
required to enable the input port connected to this channel.

In this case, the blocking type of the output ports of task t1 and task t2
should be amended to specify whether the tasks are allowed to complete
when the maximal capacity of the outgoing channels has been reached.
The minimal channel capacity can be also modified, which will affect the
enabling status of the channel c1 and task t3.
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• Blocking of output ports. Depending on the type of channels used,
output ports can be set to the blocked or open mode. Safe and bounded
channels can be connected to the open and blocked output ports, while
unbounded channels can only be connected to open output ports respec-
tively.

• Message consumption mode. If the channels in use are bounded or
unbounded, then the minimal or maximal message consumption modes
must be selected to specify the limited or full message consumption from
the channels respectively.

• Input Sets. If the external channel c1 is replaced by two local channels for
a dedicated transfer of messages from tasks task t1 and task t2, the input
sets of task t3 should be made disjoint. To guarantee that task t3 will be
executed upon enabling of each port, and not once (if both input ports
are enabled), the input consumption mode and the message consumption
mode should be set to minimal.

• Cancellation Set. The cancellation set defined for task t3 can be ex-
tended depending on the context in which the discriminator is used.

Staffware implementation Staffware does not support this pattern directly.
However, a work around solution can be constructed using a script and Decision
construct as it is shown in [24].

Oracle BPEL PM implementation Oracle BPEL PM does not support this
pattern.

3.10 WP9b -N-out-of-M join

Description N-out-of-M Join is a point in a workflow process where M parallel
paths converge into one. The subsequent activity should be activated once N
paths have completed. Completion of all remaining paths should be ignored.
Similarly to the discriminator, once all incoming branches have ”fired”, the
join resets itself so that it can fire again.

Selected WPSL specification Figure 31 demonstrates the N-out-of-M join pat-
tern.

Configuration shown is for a 2-out-of-3 join, however it can be easily extended
to any required number of inputs. Task t4 is executed after any two tasks
from t1, t2 and t3 have completed. Task t4 consumes only 2 messages, which
is ensured by setting the minimal message capacity of the channels c1, c2
and c3 to 1 and the message consumption mode to minimal. The input set
specifies that task t4 can be enabled if any two input ports have been enabled.
In the case where more than two ports are enabled, two ports are arbitrarily
selected. This is reflected by the input selection mode which is set to random.
After task t4 completes, the discriminator is reset, by removing the messages
remaining in locations specified in the cancellation set of task t4.
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Fig. 31. WP9b - 2-out-of-3 join. Selected WPSL specification.

Alternative WPSL specifications The points of variation describing alterna-
tive configurations of the N-out-of-M join pattern are the same as for the
Discriminator pattern. In addition, the following variation points apply:

• Input Sets. The current definition of the N-out-of-M join pattern cap-
tures only an arbitrary combination of branches. The composition of the
input sets of task t4 for enabling of the N-out-of-M join can be can be
tuned to any required combination of inputs through the set restriction
or extension.

• Cancellation Set. The N-out-of-M join can be used with or without a
cancellation set. If at the time of task completion non-consumed messages
must be removed from the input locations, the cancellation set should
explicitly list these locations. Conversely, if non-consumed messages must
be preserved for the subsequent task enabling, the cancellation set should
remain empty.

Staffware implementation Staffware does not support this pattern directly.
However, the work around solution can be found using a script, a counter for
inputs and Decision construct as it is described in [24].

Oracle BPEL PM implementation Oracle BPEL PM does not support this
pattern.
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3.11 WP10 -Arbitrary cycles

Description A point in a workflow process where one or more activities can be
done repeatedly.

Selected WPSL specification Figure 32 illustrates a possible configuration of
the Arbitrary Cycles pattern.
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Fig. 32. WP10 - Arbitrary cycles. Selected WPSL specification.

After task t1 completes, tasks t2, t3 and t4 can be executed multiple times
depending on the choice made after tasks t3 and t4 completed respectively.
The model presented allows for multiple entry and output points from the
loop. The choice of branches for the subsequent enabling on completion of
tasks t2, t3, and t4 is specified in the output sets of the corresponding tasks.

Alternative WPSL specifications Alternative representations of the Arbitrary
Cycles pattern depend on the number of tasks in the loop, the number of entry
and output points, additional requirements and constraints set on the tasks
that can be expressed by means of the task attributes.

The Arbitrary Cycles pattern is a generic representation of the looping struc-
tures, which in special cases can be implemented as ”while-do” and ”repeat-
until” strategies.

Staffware implementation Staffware supports this pattern allowing multiple
intertwined cycles as it shown in Figure 33(a). The corresponding WPSL
notation is shown in Figure 33(b). After completing step B the choice is
made whether to execute this step again or to proceed further. This choice is
visualized by means of optional output ports and exclusive output sets of task
B. The input ports of task B are made optional respectively and the input
sets can be enabled by messages received on any of the input ports.
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Fig. 33. Staffware implementation of WP10.

Oracle BPEL PM implementation Oracle BPEL PM supports this pattern
partially via the 〈while〉 construct depicted in Figure 34(a). The behavior of
this construct is represented in WPSL in Figure 34(b). After task Assign2

completes, the decision is made whether to execute this task again (by pro-
ducing a message on the output port o1) or to exit the loop (by producing a
message on the output port o2).
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Fig. 34. Oracle implementation of WP10.

3.12 WP11 -Implicit termination

Description A given subprocess should be terminated when there is nothing else
to be done. In other words, there are no active activities in the workflow and
no other activity can be made active (and at the same time the workflow is
not in deadlock).

Selected WPSL specification In order to represent this pattern by means of
WPSL, we relax the notion of soundness of the GWF-net, allowing multiple

44



end-point channels, the enabling of which does not lead to immediate case
termination but is postponed until no active tasks are left which still may
execute or need to complete.

Task ET depicted in Figure 35 can be used to denote this pattern. ET makes
implicit termination explicit and takes as inputs the end-point channels of a
GWF-net, synchronizing them all using the information about future possible
states. To complete the case, all messages from all end-point channels are
consumed and one message is produced to the et end-channel.
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Fig. 35. WP11 - Implicit termination. The WPSL notation.

Staffware implementation Staffware suports this pattern directly. The work-
flow instance terminates if all of the corresponding branches have terminated.

Oracle BPEL PM implementation Oracle BPEL PM supports this pattern
directly by the 〈flow〉 construct, which terminates when no activities within
its body can be triggered and executed any more.

3.13 WP12 -Multiple Instances Without Synchronization

Description Within the context of a single case (i.e., workflow instance) multiple
instances of an activity can be created, i.e., there is a facility to spawn off new
threads of control. Each of these threads of control is independent of other
threads. Moreover, there is no need to synchronize these threads.

Selected WPSL specification Figure 36 demonstrates the Multiple Instances
Without Synchronization pattern.

After task t1 completes task t3 is initiated one or more times. The instances
of task t3 are not synchronized, which is ensured by means of task t2 that is
implemented in the body of a loop. At the completion of task t2, either task
t3 is triggered and task t2 will be initiated again, or task t3 is initiated and
the flow of control is passed further via an external channel c3. Note, that to
realize this behavior, the output ports of task t2 are chosen to be optional,
and the output logic of this task is captured by the output sets attribute. In
the given confuguration unbounded channels are attached to the open output
ports.

Alternative WPSL specifications The variation points of the MI without
Synchronization pattern are listed below:
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Fig. 36. WP12 - Multiple Instances Without Synchronization

• Channel characteristics. Channel capacity : The capacity of the chan-
nels can be set to bounded or unbounded depending on the number of
messages the channel is able to store at once. The minimal channel ca-
pacity of the channel should be set conjunction with the maximal channel
capacity.

• Blocking of output ports. Depending on the type of the channels used,
output ports can be set to the blocked or open mode. Safe and bounded
channels can be connected to the open and blocked output ports, while
unbounded channels only to the open output ports.

• Message consumption mode. If the channels in use are bounded or
unbounded, the minimal or maximal message consumption modes must
be selected to specify the limited or full message consumption from the
channels respectively.

Staffware implementation Staffware does not support this pattern directly.
However, a sub-case can be used as a wrapper for an activity multiple instances
of which need to be instantiated as described in [24].

Oracle BPEL PM implementation Oracle BPEL PM supports this pattern
using the 〈invoke〉 construct within the body of a 〈while〉 loop as shown in
Figure 37(a). The corresponding WPSL interpretation is given in Figure 37(b).

3.14 WP13 -Multiple Instances with a Priori Design time Knowledge

Description For one process instance an activity is enabled multiple times. The
number of instances of a given activity for a given process instance is known
at design time. Once all instances are completed some other activity needs to
be started.
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Fig. 37. Oracle implementation of WP12.

Selected WPSL specification Figure 38 demonstrates the default WPSL con-
figuration of the Multiple Instances with a priori design time knowledge pat-
tern. To distinguish between different types of multiple instance tasks we
introduce some additional graphical notations. The number of instances that
are to be created is denoted as N and listed in the list of the task attributes.
The label DTK reflects that the number of instances of the MItask to be
created is known at design-time. The execution of this task corresponds to
the enabling of N instances of a given task in parallel.
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Fig. 38. WP13 - Multiple Instances with a Priori Design time Knowledge. The WPSL
specification.

Alternative WPSL specifications An alternative means of specification is to
duplicate a task as many times as many task instances are required and to
use them together with the Parallel Split and Synchronization patterns as
illustrated in Figure 39. After task t1 completes and before task t3 may com-
mence, two instances of task t2 need to be executed. Since all instances need
to complete before task t3 commences, task t3 input sets specifies that both
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Fig. 39. WP13 - Multiple Instances with a Priori Design time Knowledge. An alternative
WPSL specification.

input ports must be enabled. Thus, task t3 plays a role of a synchronizer as
described in the Synchronization pattern, and task t1 represents the Parallel
Split.

The task attributes set for the MI task are identical for all instances of this
task. The following attributes may be varied from the settings described above:
type of channels, message consumption mode, input sets, and blocking mode.
The values they can take are the same as those described for the Parallel Split
and Synchronization patterns.

Staffware implementation Staffware supports this pattern through combina-
tion of splits and joins as illustrated in Figure 40. Multiple instances of a
task B are achieved by replicating this task and enabling all instances simul-
taneously. The synchronization of these tasks is done as the Synchronization
pattern describes.

Oracle BPEL PM implementation Oracle BPEL PM supports this pattern
by replicating an activity on each of the branches of the 〈flow〉 activity. There
should be one branch for each activity instance. See the Parallel Split pattern
for the details of the configuration of the 〈flow〉 activity.

3.15 WP14 -Multiple Instances with a Priori Runtime Knowledge

Description For one case an activity is enabled multiple times. The number
of instances of a given activity for a given case varies and may depend on
characteristics of the case or availability of resources, but is known at some
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Fig. 40. Staffware implementation of WP13.

stage during runtime, before the instances of that activity have to be created.
Once all instances are completed some other activity needs to be started.

Selected WPSL specification Figure 41 illustrates the default WPSL config-
uration of the Multiple Instances with a priori runtime knowledge pattern.
The number of instances that are to be created is denoted as N and listed
in the list of the task attributes. The label RTK means that the number of
instances of the MItask to be created is known at run-time. The execution of
this task corresponds to the enabling of N instances of a given task in parallel.
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Fig. 41. WP14 -Multiple Instances with a Priori Runtime Knowledge The WPSL spec-
ification.

Alternative WPSL specifications Figure 42 shows how to depict the sequen-
tial initiation of the task instances.

After completion of task t1, task t2 needs to be executed several times. As-
suming that the information regarding the number of instances of task t2
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Fig. 42. WP14 -Multiple Instances with a Priori Runtime Knowledge An alternative
WPSL notation.

becomes available at some stage during run-time, it can be incorporated into
the guard of task t2 and/or data conditions associated with enabling of the
output ports. In this configuration, task t2 is encapsulated within a loop,
which imposes the sequential execution of the instances of task t2.

Staffware implementation Staffware does not support this pattern directly.
However, it allows an activity to be mapped to a sub-case and use a “multiple
sub-procedure call-step” in combination with dynamic array assignments as
it is described in [24].

Oracle BPEL PM implementation Standard BPEL does not support this
pattern, however Oracle BPEL PM has implemented the 〈flowN〉 construct
which supports it (see Figure 43). Note that although for creation of instances,
〈flowN〉 uses run-time information, the actual execution of instances is done
sequentially (thus corresponding to the behavior demonstrated in Figure 42).
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Fig. 43. Oracle implementation of WP14.
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3.16 WP15 -Multiple Instances without a Priori Runtime Knowledge

Description For one case an activity is enabled multiple times. The number
of instances of a given activity for a given case is not known during design
time, nor is it known at any stage during runtime, before the instances of
that activity have to be created. Once all instances are completed some other
activity needs to be started. The difference with Pattern 14 is that even while
some of the instances are being executed or already completed, new ones can
be created.

Selected WPSL specification To express this pattern in WPSL, we introduce
two types of blocks as shown in Figure 44. Blocks (a) and (b) contain labels
D and S denoting dynamic and static modes for creating task instances. In
dynamic mode, task instances can be created while other instances are active.
In static mode, all task instances are created at once. We extend the list
of task attributes for these blocks with the following three parameters: min,
max, threshold. Parameters min, max, threshold correspond to the minimum
number of instances initiated, the maximum number of instances initiated and
the threshold value which indicates how many instances must complete before
the process can continue.
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Fig. 44. WP15 -Multiple Instances without a Priori Runtime Knowledge. The WPSL
notation.

Staffware implementation Staffware does not support this pattern directly.

Oracle BPEL PM implementation Oracle BPEL PM offers no direct sup-
port for this pattern.

3.17 WP16 -Deferred choice

Description A point in the workflow process where one of several branches is
chosen. In contrast to the XOR-split, the choice is not made explicitly (e.g.
based on data or a decision) but several alternatives are offered to the environ-
ment. However, in contrast to the AND-split, only one of the alternatives is
executed. This means that once the environment activates one of the branches
the other alternative branches are withdrawn. It is important to note that the
choice is delayed until the processing in one of the alternative branches is
actually started, i.e. the moment of choice is as late as possible.
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Selected WPSL specification Figure 45 illustrates the Deferred Choice pat-
tern.
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Fig. 45. WP16 - Deferred choice. Selected WPSL specification.

Task t1 is followed either by task t2 or by task t3. To visualize the non-
deterministic choice that is to be made, task t2 and task t3 are connected to
a single external channel, thus sharing the messages stored in it. When the
minimal capacity of the channel is reached, both task t2 and task t3 become
enabled. However, a message can be consumed only by one task at a time.
Therefore, after the message from the channel c1 has been consumed by any
of task t2 or task t3, the other task becomes disabled.

Alternative WPSL specifications Alternative configurations of the Deferred
Choice pattern may use all variants of the channel capacity, channel position-
ing, and blocking mode of the output ports as indicated for the Exclusive
Choice pattern.

Staffware implementation Staffware does not support this pattern directly.
However, it can be implemented by means of a parallel split and a withdraw
as it shown in [24]).

Oracle BPEL PM implementation Oracle BPEL PM supports this pattern
directly via the 〈pick〉 construct (see Figure 46)(a), which allows only one
of several possible activities or (a set of activities) to be executed based on
the type of message received. Alternatively, the 〈pick〉 construct allows a time
trigger to be specified for the timeouts which cancel all other alternative tasks.
The WPSL specification corresponding to the 〈pick〉 construct is shown in
Figure 46(b). For the sake of convenience we abstracted from the modelling
of the time trigger.

3.18 WP17 -Interleaved Parallel Routing

Description A set of activities is executed in an arbitrary order: each activity in
the set is executed, the order is decided at run-time, and no two activities are
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Fig. 46. Oracle implementation of WP16.

executed at the same moment (i.e. no two activities are active for the same
workflow instance at the same time).

Selected WPSL specification Figure 47 illustrates the Interleaved Parallel Rout-
ing pattern.

Task t2 and task t3 can be executed in any order after task t1 has completed
but before task t4 has commenced. To realize such a behavior, an external
channel c3 is used to ensure that the execution of task t2 and task t3 is
mutually exclusive. To enable both task t2 and task t3 concurrently, task
t1 is realized according to the Parallel Split pattern, and task t4 is realized
according to the Synchronization pattern.

Alternative WPSL specifications This pattern allows a partial order to be
specified over the sequence in which tasks are executed. This can be achieved
by modifying the input sets, the input selection mode and the message con-
sumption mode of the respective tasks (in this case task t2 and task t3). In
addition, the number of tasks involved in the interleaved parallel routing, can
be increased.

Staffware implementation Staffware does not support this pattern directly
(see [24]).

Oracle BPEL PM implementation Oracle BPEL PM does not support this
pattern (see [18]).
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Fig. 47. WP17 - Interleaved Parallel Routing. Selected WPSL specification

3.19 WP18 -Milestone

Description The enabling of an activity depends on the case being in a specified
state, i.e. the activity is only enabled if a certain milestone has been reached
which did not expire yet. Consider three activities named A, B and C. Activity
A is only enabled if activity B has been executed and C has not been executed
yet, i.e. A is not enabled before the execution of B and A is not enabled after
the execution of C.

Selected WPSL specification Figure 48 demonstrates the Milestone pattern.

In this notation, the Milestone is modelled by means of an external channel
c2. Task t5 performs the role of testing the milestone if task t7 has not been
executed yet. If the milestone (in form of a message) in the channel c2 is not
available, and task t4 has completed, task t5 cannot be executed yet. As a
result a by-pass is taken, executing task t6. After the execution of task t6,
when a message is placed in channel c2, task t5 cannot be executed anymore.
The described logic is incorporated into the input and output sets of the
corresponding tasks.

Alternative WPSL specifications The WPSL specification presented in Fig-
ure 48 allows the variations of channel capacity, although the positioning of
the channel corresponding to the milestone must be preserved.

Staffware implementation Staffware does not support this pattern.
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Fig. 48. WP18 -Milestone. Selected WPSL specification.
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Oracle BPEL PM implementation Oracle BPEL PM offers no direct sup-
port for this pattern, however some specific implementations are given in [18].

3.20 WP19 -Cancel Activity

Description An enabled activity is disabled, i.e. a thread waiting for the execu-
tion of an activity is removed.

Selected WPSL specification Figure 49 demonstrates the default WPSL no-
tation of the Cancel Activity pattern.
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Fig. 49. WP19 -Cancel Activity. The WPSL notation.

Execution of task Cancel results in the termination of task t1 and removal of
messages from its incoming channels. The locations from which the messages
should be removed are specified in the cancellation set of task Cancel.

The definition of the Cancel Activity pattern treats a task as an atomic action
and requires messages to be removed only from the incoming channels and only
supports the cancelling of enabled tasks. The WPSL notation allows the scope
of the cancellation to be extended. First of all, it incorporates the internal state
of a task into the cancellation. Secondly, by extending the cancellation set, an
arbitrary set of tasks and channels can be specified, thus allowing to cancel a
region instead of just a single task.

Staffware implementation Staffware supports this pattern by means of a withdraw
as illustrated in Figure 50(a). A trigger arriving on the top input of step A
withdraws this task, so that it won’t be executed any more. In terms of WPSL
this corresponds to cancelling task A.

Oracle BPEL PM implementation An Oracle BPEL PM provides support
for this pattern by means of a scope (see Figure 51(a)), a fault and a fault
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Fig. 50. Staffware implementation of WP19.

handler. The scope is used as wrapper for an activity that should be cancelled.
The fault handler is needed to catch the fault message which is to be thrown
when the client cancels the activity. The corresponding WPSL notation is
shown in Figure 51(b).
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Fig. 51. Oracle implementation of WP19.

3.21 WP20 -Cancel Case

Description A case, i.e. workflow instance, is removed completely (i.e., even
if parts of the process are instantiated multiple times, all descendants are
removed).

Selected WPSL specification Figure 52 demonstrates the Cancel Case pat-
tern.

Execution of task Cancel results in the cancellation of a case, i.e. all messages
are removed from all channels and all active tasks are terminated. The range
of cancellation is specified in the cancellation set of the Cancel task.
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Fig. 52. WP19 -Cancel Case. The WPSL specification.

Staffware implementation Staffware does not support this pattern directly.
However, it allows cancelling sub-cases by using the withdraw action of the
sub procedure (see [24]).

Oracle BPEL PM implementation Oracle BPEL PM supports this pattern
directly by means of the 〈terminate〉 construct as it is shown in Figure 53
(a). The execution of the 〈terminate〉 activity leads to cancelling of the whole
process instance. Figure 53 (b) shows the corresponding WPSL notation for
cancelling the case.
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Fig. 53. Oracle implementation of WP20.
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4 Lessons Learned

In Section 3 we analyzed the set of classical control-flow patterns, which resulted
in the following observations:

- The definitions of patterns were formulated under the validity of implicit
assumptions. The lack of precision in pattern definitions leads to an ambiguous
interpretation of the patterns as it was illustrated using example models in
Staffware and Oracle BPEL PM;

- Expressing the control-flow patterns in terms of WPSL, which forces to think
of the behavior inherent to a pattern from the perspective of all entity at-
tributes, allows for the definition of patterns to be made more precise;

- Depending on the value of the attributes set for the modelling entities, a single
pattern may have different notations which correspond to the same behavioral
pattern or to be treated as different behavioral patterns depending on the
values chosen for the variations points.

As we have indicated, the points of variation identified for each of the patterns
serve as classification criteria for distinguishing different variants of the same pat-
tern. For instance, the basic pattern Sequence, which is supported by all workflow
systems evaluated in [14], has several variants. It is thus important to distinguish
the characteristics of the channels used to model this pattern, specifying explicitly
the maximal channel capacity indicating the number of messages the channel is
able to store at once; the minimal channel capacity and the message consumption
mode specifying how many messages is required for enabling tasks in the sequence;
the blocking mode of the output ports of tasks in a net defining whether the tasks
producing messages may complete when the maximal channel capacity has been
reached.

Although such a classification could potentially lead to an explosion in the
number of patterns, it offers the potential to increase the precision of the pattern
definitions significantly, thus avoiding pattern misinterpretations. Moreover, the
properties of the basic model entities that are captured in WPSL are orthogonal.
By explicitly identifying the various dimensions and by distinguishing all combi-
nations of values from different dimensions we can obtain all possible variants of
control-flow patterns and thus guarantee the completeness of the patterns in the
light of the identified dimensions.

WPSL is a powerful tool for the analysis of workflow systems. So far, we have
analyzed the modelling capabilities offered by Staffware and Oracle BPEL PM
using WPSL as a means of comparing the expressiveness of the tool implemen-
tations of the control-flow patterns. Note that WPSL can be easily used for the
analysis of other workflow systems. To illustrate this, we will show the mapping
of the XOR-join and the AND-join constructs implemented in COSA and YAWL
to WPSL. These are the systems which were also mentioned in Section 1. The
mapping of process modelling languages to WPSL allows us not only to reason
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about features of specific languages but also to compare them while using WPSL
as an evaluation tool.

Figure 54 depicts the mapping of the XOR-join construct to WPSL (see models
(a) and (b) respectively). COSA activities A, B and C and states s1 and s2
correspond to WPSL tasks A, B and C and channels s1 and s2 respectively. The
maximal capacity of channels in COSA is bounded at 1, therefore the channels
are safe. In COSA tasks A and B can not be enabled if state s1 is not empty.
This corresponds to the blocked mode set for all output ports in the GWF-net.
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Fig. 54. XOR-join. Mapping of Cosa to WPSL.

Figure 55 shows the mapping of the COSA AND-join construct to WPSL
(see models (a) and (b) respectively). COSA activities A, B and C and states
s1, s2 and s3 correspond to WPSL tasks A, B and C and channels s1, s2 and
s3 respectively. Activity C requires both inputs from states s1 and s2, which
corresponds to the synchronization of incoming threads. Such AND-join behavior
is denoted in WPSL by means of the input sets of task C. Similar to the description
of XOR-join implementation in COSA, this model corresponds to a GWF-net
with safe channels, blocked output ports, and maximal input selection mode. The
enabling of tasks is based on the locally-available information.

Figure 56, Figure 57 and Figure 58 depict the mapping of the XOR-join,
AND-join and OR-join implemented in YAWL to WPSL respectively. In con-
trast to COSA, YAWL allows an unlimited number of messages to be stored in
places, therefore channels in the GWF-net are chosen to be unbounded. Since the
maximal capacity of the channels can never be reached, all output ports produce
messages in the open mode. The input selection mode for all joins is set to max-
imal, meaning that the maximal set of enabled input ports from the perspective
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Fig. 55. AND-join. Mapping of Cosa to WPSL.

of set inclusion is selected by task C. The join logic is incorporated into the input
sets of task C, the enabling of which is based on local and future states for XOR-
join and AND-join, and OR-join respectively. The messages are consumed from
channels in the minimal mode, i.e. one message is consumed from every channel
selected for the message consumption.

We have shown that WPSL can also be used for interpreting functionality of
such systems as COSA and YAWL and thus is generic enough to serve as a point
of reference for comparing modeling languages adopted by workflow systems.

5 Related Work

The concept of patterns has been originated by Christopher Alexander, who de-
fined them in the architectural context. In the early nineties, the idea of patterns
became popular in the object-oriented software community. This is evidenced by
the 23 design patterns by Gamma [12], and their numerous successors, such as
patterns for knowledge and software reuse by Sutcliffe [25], design patterns in
communication software by Rising [21], framework patterns by Pree [19], etc. In
contrast to the generic patterns, sets of language-specific pattern languages (UML,
Smalltalk, XML, Python, etc.) have been discovered and documented. Although
there is still a lot of interest to object-oriented patterns, a new pattern trend
focuses on reliable, scalable, efficient, parallel and distributed programming [?,?].

Furthermore, some work has been done on formalizing organization, process,
analysis, and business-related patterns. Among them analysis patterns by Fowler
[11]; enterprise architecture patterns by Beedle [8]; framework process patterns
by Carey [10]; patterns for e-business [6], which focus on Business patterns, In-
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Fig. 56. The XOR-join. Mapping of YAWL to WPSL.
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Fig. 57. The AND-join. Mapping of YAWL to WPSL.

62



C


jtype

blp

mcm

ism

IS

OS

CS


A


i1


jtype

blp

mcm

ism

IS

OS

CS


B


i1


jtype

blp

mcm

ism

IS

OS

CS


o2


o1


jtype(C)= future

mcm(C)= min

ism(C)=max


IS(C)={{i1},{i2},{i1,i2}}

OS(A)={{o1}}

OS(B)={{o2}}

OS(C)={{o3}}

CS(C)={}


for all output ports p:

blp(p)=open


 


o3
 p3

p2


p1


a)
 b)


Fig. 58. The OR-join. Mapping of YAWL to WPSL.

tegration patterns, and Application patterns; and business patterns at work [25],
which use UML to model a business system; process patterns [7].

The recent Workflow Patterns initiative [4] has taken an empirical approach to
identifying the most common control constructs inherent to modelling languages
adopted by workflow systems. In particular, a broad survey of modelling languages
resulted in 20 workflow patterns being identified [14]. The collection of patterns
was originally limited to the control-flow perspective, thus the data, organizational
and application perspectives were missing. In addition, the set of control-flow
patterns was not complete since the patterns were gathered non-systematically:
they were obtained as a result of an empirical analysis of the modelling facilities
offered by selected workflow systems.

The first shortcoming has been addressed by means of the systematic analysis
of data and resource perspectives and resulted in the extension of the collection
of the control-flow patterns by 40 data patterns and 43 resource patterns [23, 22].
The issue of the incompleteness of the control-flow patterns we have addressed
in this paper and resolved it by means of the systematic analysis of the classical
control-flow patterns against WPSL. Note that we are also working on revising
the current set of the control-flow patterns and extending it with new patterns.

Our work is related to investigations into the expressive power and suitabil-
ity of workflow languages, cf. [14]. Note that the term ”workflow patterns” has
been also addressed by other authors from a different perspective. In [26] a set of
workflow patterns inspired by Language/Action theory specifically aiming at vir-
tual communities was introduced. Patterns at the level of workflow architectures
rather than control flow were given in [17].

In [20] authors examined the suitability of pi-calculus for formalizing the
control-flow patterns. Such a formalization does not guarantee an unambiguous
description of a pattern since the authors did not take into account the implicit
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assumptions made in the original pattern definitions and thus analyzed specific
interpretations of the patterns excluding other interpretations.

Many workflow systems and standards such as XPDL, UML, BPEL, XLANG,
WSFL, BPML, and WSCI were evaluated from the perspective of the classical
control-flow patterns, a summary of which is available at [4]. Although multiple
standards have been proposed, none of them have become a common standard for
modeling business processes. BPEL4WS 1.1 proved to be incomplete and weak,
and has been gradually refined and extended. To increase the capabilities of BPEL,
new accompanying standards are being proposed to extend BPEL capabilities
in version 2.0 (BPELJ, BPEL4People, and BPEL-SPE). WS-BPEL 2.0 is being
constantly revisited, examined and extended, and thus has not been finalized
so far. In this setting, WPSL could be utilized to evaluate the current BPEL
functionality, identifying strengthes and weaknesses, hence serving as a starting
point for improvement.

6 Conclusions

In this paper, we introduced the Workflow Pattern Specification Language and
used it as an evaluation strategy for comparing the process modelling languages
employed by the workflow systems COSA, YAWL, Staffware, and Oracle BPEL
PM, to show that they interpret the same concepts differently while imposing
syntactic restrictions on their languages. Furthermore, we showed that ambigu-
ous definitions of the control-flow patterns can be made more precise by the means
of setting the structural and behavioral properties of the basic process modelling
entities in more detail. One of the immediate effects of doing this is the extension
of the pattern collection by pattern variants. The orthogonality of the dimensions
used for the classification of the basic modelling entities guarantees the complete-
ness of the patterns within the scope of the identified dimensions.

The practical value of WPSL is multifaceted: it can be used as a means for
expressing the control-flow patterns more precisely, and as an analysis tool for
comparing the modelling languages adopted by various workflow systems. Fur-
thermore, WPSL can be used by workflow systems developers to prevent them
from imposing restrictive constraints on workflow specifications and it can help
in identifying which pattern variants a system needs to support.

In the light of the presented work, we plan to classify the various pattern
variants identified by means of WPSL and develop a taxonomy for the control-flow
patterns. Further research is to be conducted into the identification of meaningful
combinations of the patterns.

References

1. W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, and B. Kiepuszewski.
Advanced Workflow Patterns. In O. Etzion and P. Scheuermann, editors, 7th In-
ternational Conference on Cooperative Information Systems (CoopIS 2000), volume
1901 of Lecture Notes in Computer Science, pages 18–29. Springer-Verlag, Berlin,
2000.

64



2. W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A
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