Implementing Dynamic Flexibility in Workflows
using Worklets

Michael Adams!, Arthur H. M. ter Hofstede!, David Edmond?,
and Wil M. P. van der Aalst!?

! Business Process Management Group
Queensland University of Technology, Brisbane, Australia
{m3.adams,a.terhofstede,d.edmond}@qut.edu.au
2 Department of Technology Management
Eindhoven University of Technology, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. This paper presents the implementation, using a Service Ori-
ented Architecture, of an approach for dynamic flexibility and evolution
in workflows through the support of flexible work practices, based not
on proprietary frameworks, but on accepted ideas of how people actually
work. A set of principles have been derived from a sound theoretical base
and applied to the development of worklets, an extensible repertoire of
self-contained sub-processes that can be applied in a variety of situations
depending on the context of the particular work instance.

1 Introduction

Workflow management systems are used to configure and control structured
business processes from which well-defined workflow models and instances can
be derived [1,2]. However, the proprietary process definition frameworks im-
posed make it difficult to support (i) dynamic evolution (i.e. modifying process
definitions during execution) following unexpected or developmental change in
the business processes being modelled [3]; and (ii) deviations from the prescribed
process model at runtime [4-6].

Without support for dynamic evolution, the occurrence of a process deviation
requires either suspension of execution while the deviation is handled manually,
or an entire process abort. However, since most processes are long and complex,
neither manual intervention nor process termination are satisfactory solutions
[7]. Manual handling incurs an added penalty: the corrective actions undertaken
are not added to ‘organisational memory’ [8,9], and so natural process evolution
is not incorporated into future iterations of the process. Other evolution issues
include problems of migration, synchronisation and version control [4, 10].

These limitations mean a large subset of business processes do not easily
map to the rigid modelling structures provided [11], due to the lack of flexibil-
ity inherent in a framework that, by definition, imposes rigidity. Process models
are ‘system-centric’, or straight-jacketed [12] into the supplied framework, rather
than truly reflecting the way work is actually performed [13]. As a result, users

2 Adams et. al.

are forced to work outside of the system, and/or constantly revise the static
process model, in order to successfully support their activities, thereby negat-
ing the efficiency gains sought by implementing a workflow solution in the first
place.It is therefore desirable to extend the capabilities of workflow systems by
developing an approach to dynamic flexibility based on natural work practices.

workflow schema

®—{ @

®O-{ @
®-{ - L -®

catalog of available actions

Fig. 1. Worklet Conceptual Diagram

Since the mid-nineties many researchers have worked on problems related to
workflow change (cf. Section 7). This paper is based on and extends the approach
proposed in [14]. It introduces a realisation of ‘worklets’, an extensible reper-
toire of self-contained sub-processes and associated selection rules, grounded in
a formal set of work practice principles called Activity Theory, to support the
modelling, analysis and enactment of business processes. This approach directly
provides for dynamic change and process evolution without having to resort to
off-system intervention and/or system downtime. It has been implemented as a
discrete service for the well-known, open-source workflow environment YAWL
[15,16] using a Service Oriented Architecture (SOA), and as such its applica-
bility is not limited to that environment. Also, being open-source, it is freely
available for use.

The paper is organised as follows: Section 2 provides a brief overview of
Activity Theory and lists relevant principles derived from it, then introduces the
worklet paradigm. Section 3 describes the implementation of the worklet service.
Section 4 details the worklet service architecture. Section 5 discusses process
definition methods, while Section 6 describes how the worklet approach utilises
Ripple Down Rules (RDR) to achieve contextual, dynamic selection of worklets
at runtime. Section 7 discusses related work, and finally Section 8 outlines future
directions and concludes the paper.

Dynamic Flexibility using Worklets 3

2 Achieving Flexibility through Worklets

Workflow management systems provide support for business processes that are
generally predictable and repetitive. However, the prescriptive, assembly-line
frameworks imposed by workflow systems limit the ability to model and enact
flexible work practices where deviations are a normal part of every work activ-
ity [12,17]. For these environments, formal representations of business processes
may be said to provide merely a contingency around which tasks can be formu-
lated dynamically [18], rather than a prescriptive blueprint that must be strictly
adhered to. In this sense, a workflow process model may be considered a resource
which mediates activities towards their objective.

Rather than continue to try to force business processes into inflexible frame-
works (with limited success), a more adaptable approach is needed that is based
on accepted ideas of how people actually work.

A powerful set of descriptive and clarifying principles that describe how work
is conceived, performed and reflected upon is Activity Theory, which focusses
on understanding human activity and work practices, incorporating notions of
intentionality, history, mediation, collaboration and development [19]. (A full
exploration of Activity Theory can be found in [20,21]). In [22], the authors
undertook a detailed study of Activity Theory and derived from it a set of prin-
ciples that describe the nature of participation in organisational work practices.
Briefly, the relevant principles are:

1. Activities (i.e. work processes) are hierarchical (consist of one or more ac-
tions), communal (involve a community of participants working towards a
common objective), contextual (conditions and circumstances deeply affect
the way the objective is achieved), dynamic (evolve asynchronously), and
mediated (by tools, rules and divisions of labour).

2. Actions (i.e. tasks) are undertaken and understood contextually. A repertoire
of actions is maintained and made available to any activity, which may be
performed by making contextual choices from the repertoire.

3. A work plan is not a prescription of work to be performed, but merely a
guide which may be modified during execution depending on context.

4. Deviations from a plan will naturally occur with every execution, giving rise
to learning experiences which can then be incorporated into future instanti-
ations of the plan.

Consideration of these derived principles have led to the conception, develop-
ment and implementation of a flexible workflow support system that:

— regards the process model as a guide to an activity’s objective, rather than
a prescription for it;

— provides a repertoire (or catalogue) of possible actions to be made available
for each task at each execution of a process model,;

— provides for choices to be made dynamically from the repertoire at runtime
by considering the specific context of the executing instance; and

4 Adams et. al.

— allows the repertoire of actions to be dynamically extended at runtime, thus
incorporating unexpected process deviations, not only for the current in-
stance, but for other current and future instantiations of the process model,
leading to natural process evolution.

Thus, each task of a process instance may be linked to an extensible repertoire
of actions, one of which will be contextually chosen at runtime to carry out the
task. In this work, we present these repertoire-member actions as “worklets”.
In effect, a worklet is a small, self-contained, complete workflow process which
handles one specific task (action) in a larger, composite process (activity)!. A
top-level or parent process model is developed that captures the entire workflow
at a macro level. From that manager process, worklets are contextually selected
and invoked from the repertoire of each task when the task instance becomes
enabled during execution.

In addition, new worklets for handling a task may be added to the repertoire
at any time (even during process execution) as different approaches to com-
pleting a task are developed, derived from the context of each process instance.
Importantly, the new worklet becomes part of the process model for all current
and future instantiations. In this way, the process model undergoes a dynamic
natural evolution.

3 The Worklet Custom Service for YAWL

The Worklet Dynamic Process Selection Service has been implemented as a
YAWL Custom Service [15,16]. The YAWL environment was chosen as the im-
plementation platform since it provides a very powerful and expressive workflow
language based on the workflow patterns identified in [23], together with a for-
mal semantics. It also provides a workflow enactment engine, and an editor for
process model creation, that support the control flow, data and (basic) resource
perspectives. The YAWL environment is open-source and has a service-oriented
architecture, allowing the worklet paradigm to be developed as a service inde-
pendent to the core engine. This means that deployment of the worklet service
is not limited to the YAWL environment, but may be ported to other environ-
ments by making the necessary changes to the service interface. As such, this
implementation may also be seen as a case study in service-oriented computing
whereby dynamic flexibility in workflows, orthogonal to the workflow language,
is provided.

Custom YAWL services interact with the YAWL engine through XML/HTTP
messages via certain interface endpoints, some located on the YAWL engine side
and others on the service side. Specifically, custom services may elect to be no-
tified by the engine when certain events occur in the life-cycle of nominated
process instantiations (i.e. when a workitem becomes enabled, when a workitem
is cancelled, when a case completes). On receiving a workitem-enabled message,

! In Activity Theory terms, a worklet may represent one action within an activity, or
may represent an entire activity.

Dynamic Flexibility using Worklets 5

the custom service may elect to ‘check-out’ the workitem from the engine. On
doing so, the engine marks the workitem as executing and effectively passes oper-
ational control for the workitem to the custom service. When the custom service
has finished processing the workitem it will check it back in to the engine, at
which point the engine will mark the workitem as completed, and proceed with
the process execution.

The worklet service utilises these interactions by substituting an enabled
workitem in a YAWL process with a dynamically selected worklet - a discrete
YAWL process that acts as a sub-net for the workitem and so handles one spe-
cific task in a larger, composite process activity.

An eatensible repertoire (or catalogue) of worklets is maintained for each
nominated task in a parent workflow process. Each time the service is invoked
for an enabled workitem, a choice is made from the repertoire based on the
data attributes and values associated with the workitem, using a set of rules to
determine the most appropriate substitution. The workitem is checked out of the
YAWL engine, the input variables of the original workitem are mapped to the
net-level input variables of the selected worklet, and then the worklet is launched
as a separate case. When the worklet has completed, its net-level output variables
are mapped back to the output variables of the original workitem, which is then
checked back into the engine, allowing the original (parent) process to continue.

The worklet executed for a task is run as a separate case in the YAWL engine,
so that, from an engine perspective, the worklet and its parent are two distinct,
unrelated cases. The worklet service tracks the relationships, data mappings and
synchronisations between cases, and creates a process log that may be combined
with the engine’s process logs via case identifiers to provide a complete opera-
tional history of each process.

Worklets may be associated with an atomic task, or a multiple-instance
atomic task. Any number of worklets can form the repertoire of an individ-
ual task, and any number of tasks in a particular specification can be associated
with the worklet service. A worklet may be a member of one or more repertoires
— that is, it may be re-used for several tasks. In the case of multiple-instance
tasks, a separate worklet is launched for each child workitem. Because each child
workitem may contain different data, the worklets that substitute for them are
individually selected, and so may all be different.

The repertoire of worklets for a task can be added to at any time, as can
the rules base used for the selection process, including while the parent process
is executing. Thus the service provides for dynamic ad-hoc change and process
evolution, without having to resort to off-system intervention and/or system
downtime, or modification of the original process specification.

4 Worklet Service Architecture

Figure 2 shows the external architecture of the worklet service. As mentioned
previously, the service has been implemented as a Custom YAWL Service [16].
The YAWL engine provides a number of interfaces, two of which are used by the

6 Adams et. al.

YAWL
editor

e
Specs =
vawL (A " Worklet — Y

engine B service RDR
! 7 \ editor
IIHHHHII

Y

|D

YAWL J
worklist -'

user

Fig. 2. External Architecture of the Worklet Service

worklet service. Interface A provides endpoints for process definition, adminis-
tration and monitoring; Interface B provides endpoints for client and invoked
applications and workflow interoperability [16]. The worklet service uses Inter-
face A to upload worklet specifications into the engine, and Interface B for con-
necting to the engine, to start and cancel case instances, and to check workitems
in and out of the engine after interrogating their associated data.

The disk entities ‘Worklet specs’, ‘RDRs’ and ‘Logs’ in Figure 2 comprise
the worklet repository. The service uses the repository to store rule sets and load
them for enabled workitems, to store worklet specifications for uploading to the
engine and to store generated process and audit logs. The YAWL editor is used
to create new worklet specifications, and may be invoked from the RDR (Ripple
Down Rules) Editor. The RDR, Editor is used to create new or augment existing
rule sets, making use of certain selection logs to do so, and may communicate
with the worklet service via a JSP/Servlet interface to override worklet selections
following rule set additions (see Section 6).

Figure 3 shows a representation of the internal architecture of the worklet
service. The WorkletSelector object handles all interactions with the YAWL
engine, and administrates the service. For each workitem that it checks out
of the engine, it creates a CheckedOutltem object. In YAWL, each workitem
is a ‘parent’ of one or more child items — one if it is an atomic task, or a
number of child items in the case of a multiple instance atomic task. Thus,
the role of each CheckedOutltem object is to create and manage one or more
CheckedOutChildItems, which hold information about worklet selection, data
associated with the workitem and the results of rules searches.

The WorkletSelector, for each workitem that is checked out from the engine,
also loads from file the set of rules pertaining to the specification of which the
workitem is a member into an RdrSet object. At any time, there may be a
number of RdrSets loaded into the service, one for each specification for which
a workitem has been checked out. Each RdrSet manages one or more RdrTree

Dynamic Flexibility using Worklets 7

1 *
| RdrSet
1
*
to YAWL) .
Engine CheckedOutltem RdrTree
WorkletSelector

1 1

CheckedOutChildltem RdrNode

ConditionEvaluator

wsGateway

A

to Rules
Editor

Fig. 3. Internal Architecture of the Worklet Service

objects, each tree representing the rule tree for a particular task within the
specification, of which this workitem is an instance. In turn, each RdrTree owns
a number of RdrNode objects, which contain the actual rules, conclusions and
other data for each node of the rule tree.

When a rule tree is evaluated against the data set of a workitem, each of the
associated nodes of that tree has its condition evaluated by the ConditionFEvalu-
ator object, which returns the boolean result to the node, allowing it to traverse
to its true or false branch as necessary. Refer to Appendiz A for a set of sequence
diagrams that illustrate this process.

Finally, the wsGateway object provides communications via a JSP/Servlet
interface between the service and the Rules Editor (see Section 6 for more de-
tails).

5 Process Definition

Fundamentally, a worklet is nothing more than a workflow specification that has
been designed to perform one part of a larger, parent specification. However,
it differs from a decomposition or sub-net in that it is dynamically assigned to
perform a particular task at runtime, while sub-nets are statically assigned at
design time. So, rather than being forced to define all possible branches in a
specification, the worklet service allows the definition of a much simpler specifi-
cation that will evolve dynamically as more worklets are added to the repertoire
for particular tasks within it.

8 Adams et. al.

Figure 4 shows a simple example specification (in the YAWL Editor) for a
Casualty Treatment process. In this process, the Treat task is to be substituted
at runtime with the appropriate worklet based on the patient data collected in
the Admit and Triage tasks. That is, depending on each patient’s actual physical
data and reported symptoms, we would like to run the worklet that best handles
the patient’s condition. This intentionally simplified process specification will be
used throughout the remainder of this paper to demonstrate the operation of
the worklet service.

© YAWLEditor

Specification MNet Edit Elements Tools View Help
G & B @

© casakylremtment i o

(@](={m]

Admit Triage Treat Discharge

Fig. 4. Parent ‘Casualty Treatment’ Process

Each task in a process specification may be flagged to notify the service
when it becomes enabled. In this example, only the Treat task is flagged so; the
other tasks are handled directly by the YAWL environment. So, when a Casualty
Treatment process is executed, the YAWL Engine will notify the worklet service
when the Treat task becomes enabled. The worklet service will then examine the
data in the task and use it to determine which worklet to execute as a substitute
for the task.

A worklet specification is a standard YAWL process specification, and as such
is created in the YAWL Editor in the usual manner. Figure 5 shows a simple
example worklet to be substituted for the Treat top-level task when a patient
complains of a fever.

In itself, there is nothing special about the Treat Fever specification in Figure
5. Even though it will be considered by the worklet service as a member of
the worklet repertoire and may thus be considered a “worklet”, it also remains
a standard YAWL specification and as such may be executed directly by the
YAWL engine without any reference to the worklet service, if desired.

The association of tasks with the worklet service is not restricted to top-level
specifications. Worklet specifications also may contain tasks that are associated
with the worklet service and so may have worklets substituted for them, so that
a hierarchy of executing worklets may sometimes exist. It is also possible to
recursively define worklet substitutions - that is, a worklet may contain a task
that, while certain conditions hold true, is substituted by another instance of
the same worklet specification that contains the task.

Dynamic Flexibility using Worklets 9

TreatFever

®—— | @

Test Fever Treat Fever

Fig. 5. The ‘Treat Fever’ Worklet Process

Any number of worklets can be created for a particular task. For the Casualty
Treatment example, there are currently five worklets in the repertoire for the
Treat task, one for each of the five conditions that a patient may present with
in the Triage task: Fever, Rash, Fracture, Wound and Abdominal Pain. Which
worklet is chosen for the Treat task depends on which of the five is given a value
of True in the Triage task.

6 Context and Worklet Selection

The consideration of context plays a crucial role in many diverse domains, in-
cluding philosophy, pragmatics, semantics, cognitive psychology and artificial
intelligence [24]. In order to realise the worklet approach, the situated contex-
tual factors relevant to each case instance were required to be quantified and
recorded [25] so that the appropriate worklet can be ‘intelligently’ selected from
the repertoire at runtime.

The types of contextual data that may be recorded and applied to a busi-
ness case may be categorised as follows (examples are drawn from a Casualty
Treatment process):

— Generic (case independent): data attributes that can be considered likely
to occur within any process (of course, the data values change from case to
case). Such data would include descriptors such as created when, created by,
times invoked, last invoked, current status; and role or agent descriptors such
as experience, skills, rank, history with this process and/or task and so on.
Process execution states and process log data also belong to this category.

— Case dependent with a-priori knowledge: that set of data that are
known to be pertinent to a particular case when it is instantiated. Generally,
this data set reflects the data variables of a particular process instance.
Examples are: patient name and id, blood pressure readings, height, weight,
symptoms and so on; deadlines both approaching and expired; and diagnoses,
treatments and prescribed medications.

— Case dependent with no a-priori knowledge: that set of data that
only becomes known when the case is active and deviations from the known
process occur. Examples in this category may include complications that

10 Adams et. al.

arise in a patient’s condition after triage, allergies to certain medications
and so on.

Each worklet is a representation of a particular situated action, the runtime
selection of which relies on the relevant context of each case instance, derived
from case data. The worklet selection process is achieved through the use of Rip-
ple Down Rules (RDR), which comprise a hierarchical set of rules with associated
exceptions, first devised by Compton and Jansen [26].

The fundamental feature of RDR is that it avoids the difficulties inherent in
attempting to compile, a-priori, a systematic understanding, organisation and
assembly of all knowledge in a particular domain. Instead, it allows for general
rules to be defined first with refinements added later as the need arises [27].

n— ___—-(l condition /‘.

true A

default e aemmees

777! conclusion)

- AN

Fever = True
TreatFever
Condition not satisfied Wound = True Condition satisfied

TreatWound

- I

AbdominalPain = True

TreatAbPain

' I - DN

Fracture = True

Pregnant = True

TreatFracture

B

Rash = True

TreatLabour

TreatRash

o

HeartRate >= 190

TreatHighHeartRate

Fig. 6. Conceptual Structure of a Ripple Down Rule (Casualty Treatment Example)

An RDR Knowledge Base is a collection of simple rules of the form “if con-
dition then conclusion”, conceptually arranged in a binary tree structure. Each

Dynamic Flexibility using Worklets 11

rule node may have a false (‘or’) branch and/or a true (‘exception’) branch to
another rule node, except for the root node, which contains a default rule and
can have a true branch only. If a rule is satisfied, the true branch is taken and
the associated rule is evaluated; if it is not satisfied, the false branch is taken and
its rule evaluated [28]. When a terminal node is reached, if its rule is satisfied,
then its conclusion is taken; if its rule is not satisfied, then the conclusion of the
last rule satisfied on the path to that node is taken. This tree traversal provides
implied locality - a rule on an exception branch is tested for applicability only if
its parent (next-general) rule is also applicable.

A workflow process specification may contain a number of tasks, one or more
of which may be associated with the worklet service. For each specification that
contains a worklet-enabled task, the worklet service maintains a corresponding
set of ripple down rules that determine which worklet will be selected as a sub-
stitute for the task at runtime, based on the current case data of that particular
instance. Each worklet-enabled task in a specification has its own discrete rule
set. The rule set or sets for each specification are stored as XML data in a disk
file that has the same name as the specification, except with an “.xrs” extension
(XML Rule Set). All rule set files are stored in the worklet repository.

Occasionally, the worklet started as a substitute for a particular workitem,
while the correct choice based on the current rule set, is considered by a user
to be an inappropriate choice for a particular case. For example, if a patient in
a Casualty Treatment case presents with a rash and a heart rate of 190, while
the current rule set correctly returns the TreatRash worklet, it may be desirable
to treat the racing heart rate before the rash is attended to. In such a case,
when the worklet service begins an instance of the TreatRash process, a user
may reject it by advising an administrator of the inappropriate choice. Thus the
administrator would need to add a new rule to the rule set so that cases that
have such data (both now and in the future) will be handled correctly.

If the worklet returned is found to be unsuitable for a particular case instance,
a new rule is formulated that defines the contextual circumstances of the instance
and is added as a new leaf node using the following algorithm:

— If the worklet returned was the conclusion of a satisfied terminal rule, then
the new rule is added as a local exception to the exception ‘chain’ via a new
true branch from the terminal node.

— If the worklet returned was the conclusion of a non-terminal, ancestor node
(that is, the condition of the terminal rule was not satisfied), then the new
rule is added via a new false branch from the unsatisfied terminal node.

In essence, each added exception rule is a refinement of its parent rule. This
method of defining new rules allows the construction and maintenance of the
KB by “sub-domain” experts (i.e. those who understand and carry out the work
they are responsible for) without regard to any engineering or programming
assistance or skill [29].

Each rule node incorporates a set of case descriptors that describe the actual
case that was the catalyst for the creation of its rule. This case is referred to as

12 Adams et. al.

the ‘cornerstone case’. The descriptors of this cornerstone case refer to essential
attributes of a case, for example, the sex, heart rate, age, and weight of a patient.
The condition for the new rule is determined by comparing the descriptors of
the current case to those of the cornerstone case of the returned worklet and
identifying a sub-set of differences. Not all differences will be relevant — to define
a new rule it is only necessary to determine the factor or factors that make it
necessary to handle the current case in a different fashion to the cornerstone case.
The identified differences are expressed as attribute-value pairs, using the normal
conditional operators. The current case descriptors become the cornerstone case
for the newly formulated rule; its condition is formed by the identified attribute-
values and represents the context of the case instance that caused the addition
of the rule.

- Worklet Rules Editor: Casualty_Treatment

Ele Rule Options Help

Tazk: |Treat hd
RDR Tree Cornerstone Case
= |E Fule 0 PatiertlD = 3457687 A
Rule 1 Sex =M
Rule DiastalicEP = 80
Height =1.8
Rule 3 HeartRate = 72
Rule 4 SwstolicBF =120
Rul= 5 Fracture = false
Age =21
Weight =85
Fewer = true
Razh = false
“Wound = false
Mame = Buster Legg b
Selected Node

Mode 1D: 1 Parent Mode 1D: |0

Condition: — [Fever = true

‘wharklet: |T reatFever

Description; |basic waorklet for a fever

Fig. 7. The Worklet Rules Editor

A separate Rules Editor tool (Figure 7) has been developed to allow for the
easy addition of new rules and associated worklets to existing rule sets and the
creation of new rule sets.

Each time the worklet service selects a worklet to execute as a substitute
for a specification instance’s workitem, a file is created that contains certain
descriptive data about the selection process. These files are stored in the worklet

Dynamic Flexibility using Worklets 13

repository, again in XML format. Thus to add a new rule to the existing rule
set after an inappropriate selection, the particular selection file for the case that
was the catalyst for the rule addition is first loaded into the Rules Editor.

- Add New Rule: 4.3-3_Treat - TreatRash

Comerstone Case Currert Case
PatientlD = 2003810 A Patientl D = 374-33 A
Sex=F Sex=M
DiastolicBP = 70 DiastolicBP = 30
Height = 1.55 Height = 1.8
HeantRate = 72 HeartFate = 190
SpstolicBP - 110 SystalicBP — 120 Lae
Fracture = false Fracture = false
Age =73 Age =21
YWeight = 77 “Weight = 85
Fewver = false Fewer = false
Fash = true Rash = trug
Wound = false whaund = false
Mame = Theresa Green % Marne = Patty Ticker b
MHew Rule Node
Made ID: 5 Parent Hode ID: |5
Condition: |
wiorklet: | BobFive ﬂ Hew.
Drescription:

Fig. 8. Rules Editor (Add New Rule Screen)

Figure 8 shows the Add New Rule screen of the Rules Editor with a selection
file loaded. The Cornerstone Case panel shows the case data that existed for the
creation of the original rule for the TreatRash selection. The Current Case panel
shows the case data for the current case - that is, the case that is the catalyst
for the addition of the new rule. The New Rule Node panel is where the details
of the new rule are added. Notice that the ids of the parent node and the new
node are shown as read only - the Rules Editor takes care of where in the rule
tree the new rule node is to be placed, and whether it is to be added as a true
child or false child node, using the algorithm described above.

In this example, there are many data values that differ between the two case
data sets shown in Figure 8, such as PatientID, Name, Sex, Blood Pressure
readings, Height, Weight and Age. However, the only differing data item of
relevance here is HeartRate - that is the only data item that, in this case, makes
the selection of the TreatRash worklet inappropriate. Selecting the HeartRate
line in the list of Current Case data items will copy it to the condition field,
where it may be modified as necessary. In this case, the new rule would become,
as an example, “HeartRate > 190”.

14 Adams et. al.

It is not necessary to define a conjunctive rule such as “Rash = True AND
HeartRate > 190", since this new rule will be added to the true branch of the
TreatRash node. By doing so, it will only be evaluated if the condition of its
parent, "Rash = True”, first evaluates to True. Therefore, any rule nodes added
to the true branch of a parent become exception rules of the parent.

After defining a condition for the new rule, the name of the worklet to be
executed when this condition evaluates to true must be entered in the Worklet
field of the Editor (refer Figure 8). This input is a drop-down list that contains
the name of all the worklets currently in the worklet repository. An appropriate
worklet for this rule may be chosen from the list, or, if none are suitable, a new
worklet specification can be created.

After a new rule is added, the Editor provides the choice for the administrator
to replace the started (inappropriate) worklet instance with an instance of the
worklet defined in the new rule. If replace is chosen, the Rules Editor will contact
the worklet service via HI'TP and request the change. The service responds with
a dialog similar to Figure 9.

Result of replace request

* Locating workitem '4.3:3_Treat' in the set of currently handled workitems. .. found.
\E) Cancelling running worklet case with case id 5 For workitem. . .done.

Launching new replacement worklet case based on revised ruleset. .. done.

The worklet "TreatHighHeartRate' has been launched For workitem '4.5:3_Treat' and has case id: 6

Fig. 9. Example Dialog Showing a Successful Dynamic Replacement

7 Related Work

Since the mid-nineties much research has been done on issues related to flex-
ibility and change in workflow management systems (cf. the classification into
ad-hoc, administrative, and production workflows in [30]). While it is impossible
to provide a complete overview of the work done in this area, reference is made
here to a number of quite different approaches to providing dynamic flexibility.

Generally, commercial workflow management systems provide various levels
of support for the decomposition of tasks and sub-processing. However, each
of the products require the model to be fully defined before it can be instan-
tiated, and changes must be incorporated by modifying the model statically.
Staffware provides ‘re-usable process segments’ that can be inserted into any
process. SAP R/3 allows for the definition of ‘blocks’ that can be inserted into
other ‘blocks’, thus providing some support for encapsulation and reuse. COSA
supports parent-sibling processes, where data can be passed to/from a process to

Dynamic Flexibility using Worklets 15

a sub-process. MQ Workflow allows sub-processes to be defined and called stat-
ically from within a process. Clearly, all of these static forms of decomposition
do not offer support for dynamic flexibility.

Among the non-commercial systems, ADEPT [31] supports modification of
a process during execution (i.e. add, delete and change the sequence of tasks)
both at the type (dynamic evolution) and instance levels (ad-hoc changes). Such
changes are made to a traditional monolithic model and must be achieved via
manual intervention. The WASA [32] system provides some support for dynamic
change, mainly focusing on scientific applications. It allows an administrator to
modify a (monolithic) specification and then restart a task, but then only at
the instance level. A catalog of ‘skeleton’ patterns that can be instantiated or
specialised at design time is supported by the WERDE system [5]. Again, there
is no scope for specialisation changes to be made at runtime. It should be noted
that only a small number of academic prototypes have had any impact on the
frameworks offered by commercial systems [33].

Nevertheless, there are some interesting commercial products that offer inno-
vative features with respect to flexibility. Caramba [34] supports virtual teams in
their ad hoc and collaborative processes by enabling links between artifacts (for
example, documents and database objects), business processes (activities), and
resources (persons, roles, etc.). FLOWer supports the concept of case-handling;
the process model only describes the preferred way of doing things and a variety
of mechanisms are offered to allow users to deviate in a controlled manner [1].

The implementation discussed in this paper differs considerably from the
above approaches. Worklets linked together by extensible Ripple Down Rules
provide an alternative method for the provision of dynamic flexibility. An ap-
proach with some similarities to worklets is is the Process Orchestrator, an op-
tional component of Staffware [35], which provides for the dynamic allocation
of sub-processes at runtime. It requires a construct called a “dynamic event” to
be explicitly modelled that will execute a number of sub-processes listed in an
‘array’ when execution reaches that event. Which sub-processes execute depend
on predefined data conditionals matching the current case. Unlike the worklet
approach, the listed sub-processes are statically defined, as are the conditionals —
there is no scope for dynamically refining conditionals, nor adding sub-processes
at runtime.

8 Conclusion and Future Work

Workflow management systems impose a certain rigidity on process definition
and enactment because they use frameworks based on assembly line metaphors
rather than on ways work is actually planned and carried out. An analysis of
Activity Theory provided principles of work practices that were used as a tem-
plate on which a workflow service has been built that better supports flexibility
and dynamic evolution. By capturing contextual data, a repertoire of actions is
constructed that allow for contextual choices to be made from the repertoire at

16 Adams et. al.

runtime to efficiently carry out work tasks. These actions, or worklets, directly
provide for process evolution and flexibility, and mirror accepted work practices.
The worklet approach presents several key benefits, including;:

A process modeller can describe the standard activities and actions for a

workflow process, and any deviations, using the same methodology;

— It allows re-use of existing process components and aids in the development
of fault tolerant workflows using pre-existing building blocks [36];

— Its modularity simplifies the logic and verification of the standard model,
since individual worklets are less complex to build and therefore easier to
verify than monolithic models;

— It provides for a variety of workflow views of differing granularity, which
offers ease of comprehensibility for all stakeholders;

— It allows for gradual and ongoing evolution of the model, so that global
modification each time a business practice changes or a deviation occurs is
unnecessary; and

— In the occurrence of an unexpected event, the modeller needs simply to

choose an existing worklet or build a new one for that case, which can be au-

tomatically added to the repertoire for future use as necessary, thus avoiding
complexities including downtime, model restructuring, versioning problems
and so on.

This implementation used the open-source, service-oriented architecture of
YAWL to develop a service for dynamic flexibility independent to the core en-
gine. Thus, the implementation may be considered a successful case study in
service-oriented computing. It is the first part of a comprehensive approach to
dynamic workflow and is intended to be extended in the near future to also pro-
vide support for dynamic handling of process exceptions using the same service
paradigm. One of the interesting things to be investigated is the application of
process mining techniques to the logs collected by the Worklet service. A better
understanding of when and why people tend to “deviate” from a work plan is
essential for providing better tool support.

All system files, source code and documentation for YAWL and the worklet
service, including the examples discussed in this paper, may be downloaded via
WWW.yawl-system.com.

References

1. W.M.P. van der Aalst, Mathias Weske, and Dolf Griinbauer. Case handling: A new
paradigm for business process support. Data & Knowledge Engineering, 53(2):129—
162, 2005.

2. Gregor Joeris. Defining flexible workflow execution behaviors. In Peter Dadam and
Manfred Reichert, editors, Enterprise-wide and Cross-enterprise Workflow Man-
agement: Concepts, Systems, Applications, volume 24 of CEUR Workshop Proceed-
ings, Paderborn, Germany, October 1999.

10.

11.

12.

13.

14.

15.

16.

17.

Dynamic Flexibility using Worklets 17

Alex Borgida and Takahiro Murata. Tolerating exceptions in workflows: a uni-
fied framework for data and processes. In Proceedings of the International Joint
Conference on Work Activities, Coordination and Collaboration (WACC’99), pages
59-68, San Francisco, CA, February 1999. ACM Press.

S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes
in workflow systems: A survey. Data and Knowledge Engineering, 50(1):9-34, 2004.
Fabio Casati. A discussion on approaches to handling exceptions in workflows. In
CSCW Workshop on Adaptive Workflow Systems, Seattle, USA, November 1998.
C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow
systems. In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan, editors,
Proceedings of the Conference on Organizational Computing Systems, pages 10-21,
Milpitas, California, August 1995. ACM SIGOIS, ACM Press, New York.

Claus Hagen and Gustavo Alonso. Exception handling in workflow management
systems. IEEE Transactions on Software Engineering, 26(10):943-958, October
2000.

Mark S. Ackerman and Christine Halverson. Considering an organization’s mem-
ory. In Proceedings of the ACM 1998 Conference on Computer Supported Cooper-
ative Work, pages 39-48. ACM Press, 1998.

Peter A. K. Larkin and Edward Gould. Activity theory applied to the corpo-
rate memory loss problem. In L. Svennson, U. Snis, C. Sorensen, H. Fagerlind,
T. Lindroth, M. Magnusson, and C. Ostlund, editors, Proceedings of IRIS 28 Lab-
oratorium for Interaction Technology, University of Trollhattan Uddevalla, 2000.

W.M.P. van der Aalst. Exterminating the dynamic change bug: A concrete ap-
proach to support workflow change. Information Systems Frontiers, 3(3):297-317,
2001.

Jakob E. Bardram. I love the system - I just don’t use it! In Proceedings of the
1997 International Conference on Supporting Group Work (GROUP’97), Phoenix,
Arizona, 1997.

W.M.P. van der Aalst and P.J.S. Berens. Beyond workflow management: Product-
driven case handling. In S. Ellis, T. Rodden, and I. Zigurs, editors, International
ACM SIGGROUP Conference on Supporting Group Work, pages 42-51, New York,
2001. ACM Press.

I. Bider. Masking flexibility behind rigidity: Notes on how much flexibility people
are willing to cope with. In J. Castro and E. Teniente, editors, Proceedings of the
CAiSE’05 Workshops, volume 1, pages 7-18, Porto, Portugal, 2005. FEUP Edicoes.
Michael Adams, Arthur H. M. ter Hofstede, David Edmond, and Wil M.P. van der
Aalst. Facilitating flexibility and dynamic exception handling in workflows through
worklets. In Orlando Bello, Johann Eder, Oscar Pastor, and Joao Falcao e Cunha,
editors, Proceedings of the CAiSE’05 Forum, pages 45-50, Porto, Portugal, June
2005. FEUP Edicoes.

W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245-275, 2005.

W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design
and implementation of the YAWL system. In A. Persson and J. Stirna, editors,
Proceedings of The 16th International Conference on Advanced Information Sys-
tems Engineering (CAiSE 04), volume 3084 of LNCS, pages 142-159, Riga, Latvia,
June 2004. Springer Verlag.

Diane M. Strong and Steven M. Miller. Exceptions and exception handling in
computerized information processes. ACM Transactions on Information Systems,
13(2):206-233, 1995.

18

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Adams et. al.

Jakob E. Bardram. Plans as situated action: an Activity Theory approach to
workflow systems. In Proceedings of the 1997 European Conference on Computer
Supported Cooperative Work (ECSCW’97), pages 17-32, Lancaster U.K., 1997.
Bonnie A. Nardi. Activity Theory and Human-Computer Interaction, pages 7—16.
In Nardi [21], 1996.

Y. Engestrom. Learning by Fzpanding: An Activity- Theoretical Approach to De-
velopmental Research. Orienta-Konsultit, Helsinki, 1987.

Bonnie A. Nardi, editor. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, Cambridge, Massachusetts, 1996.

Michael Adams, David Edmond, and Arthur H.M. ter Hofstede. The application of
activity theory to dynamic workflow adaptation issues. In Proceedings of the 2003
Pacific Asia Conference on Information Systems (PACIS 2003), pages 1836-1852,
Adelaide, Australia, July 2003.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(3):5-51, July 2003.
Paolo Bouquet, Chiara Ghidini, Fausto Giunchiglia, and Enrico Blanzieri. The-
ories and uses of context in knowledge representation and reasoning. Journal of
Pragmatics, 35(3), 2003.

Debbie Richards. Combining cases and rules to provide contextualised knowledge
based systems. In Modeling and Using Context, Third International and Interdis-
ciplinary Conference, CONTEXT 2001, volume 2116 of Lecture Notes in Artifical
Intelligence, pages 465-469, Dundee, UK, July 2001. Springer-Verlag, Berlin.

P. Compton and B. Jansen. Knowledge in context: A strategy for expert system
maintenance. In J.Siekmann, editor, Proceedings of the 2nd Australian Joint Artifi-
cial Intelligence Conference, volume 406 of Lecture Notes in Artificial Intelligence,
pages 292-306, Adelaide, Australia, November 1988. Springer-Verlag.

Tobias Scheffer. Algebraic foundation and improved methods of induction of ripple
down rules. In Procceedings of the Pacific Rim Workshop on Knowledge Acquisi-
tion, Sydney, Australia, 1996.

B. Drake and G. Beydoun. Predicate logic-based incremental knowledge acqui-
sition. In P. Compton, A. Hoffmann, H. Motoda, and T. Yamaguchi, editors,
Proceedings of the sizth Pacific International Knowledge Acquisition Workshop,
pages 71-88, Sydney, December 2000.

Byeong Ho Kang, Phil Preston, and Paul Compton. Simulated expert evaluation
of multiple classification ripple down rules. In Proceedings of the 11th Workshop on
Knowledge Acquisition, Modeling and Management, Banff, Alberta, Canada, April
1998.

Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of work-
flow management: From process modelling to workflow automation infrastructure.
In Distributed and Parallel Databases, volume 3, pages 119-153. Kluwer Academic
Publishers, Boston, 1995.

Clemens Hensinger, Manfred Reichert, Thomas Bauer, Thomas Strzeletz, and Pe-
ter Dadam. ADEPT yorkfiow - advanced workflow technology for the efficient sup-
port of adaptive, enterprise-wide processes. In Conference on Extending Database
Technology, Konstanz, Germany, March 2000.

G. Vossen and M. Weske. The WASA approach to workflow management for
scientific applications. In A. Dogac, L. Kalinichenko, M.T. Ozsu, and A. Sheth,
editors, Workflow Management Systems and Interoperability, volume 164 of ASI
NATO Series, Series F: Computer and Systems Sciences, pages 145-164. Springer,
1999.

33.

34.

35.

36.

Dynamic Flexibility using Worklets 19

Michael zur Muehlen. Workflow-based Process Controlling. Foundation, Design,
and Implementation of Workflow-driven Process Information Systems, volume 6 of
Advances in Information Systems and Management Science. Logos, Berlin, 2004.
S. Dustdar. Caramba - a process-aware collaboration system supporting ad hoc
and collaborative processes in virtual teams. Distributed and Parallel Databases,
15(1):45-66, 2004.

Michael Georgeff and Jon Pyke. Dynamic process orchestration. White
paper, Staffware PLC http://is.tm.tue.nl/bpm2003/download/WP%20Dynamicy
20Proce%ss’200rchestration’20vl.pdf, March 2003.

Claus Hagen and Gustavo Alonso. Flexible exception handling in process support
systems. Technical report no. 290, ETH Zurich, 1998.

Adams et. al.

20

I 1 I |
I 1 I I
I 1 | |
I 1 I |
I 1 I | |
T —
W " W W S5B0 JAOM VIS |
I | I | |
| I | | B 858D depy |
I 1 I | 1 |
I 1 I | 1 |
1
W " W W “ aRdg oA peojdn |
|||||||||||||||||| s
I 1 I A |
I | | BUIEN 1THOM |
I [- 1 I
1 | SUIEN BIHION, I |
i
W Uaieeg ansinoey “ W
I 1 1 I
I 1 1 |
I 1 T 1 |
| | | Sapop yoseag I |
I 1 I T T |
I 1 I | 881) yoieas |
.
W " W W “ wal| Py InosIEyg »|
| | | | 1 T £
I 1 1 1 1 wey piya yoge gy |y
I 1 | | I |
I 1 | | 1 |
I -—F——- T [t o ittt — I
. ! Plaoay el | | B9EIde) U JNooD
I I 1 |
28y PIUD | | | 1 1041 0p SINCHIRLE
I | 1 |
I 95 PIMD PING | | 1 I
I T T T I
n I I pioasy wal| ping 1 |
—————
m "] W W " WBIHONA IIGHORD) |
I I 1 I T — |
I 1 I | s8s18my |
= I | [I — I
g | | | Bal]8INY |
a | [|
I 1 |
o 1 | | 1oUpa S8 Lo
D I 1 | BPON PRV | Isanba, soedes
| | | T I) P <l ey yuted Kus
] 1 I | wEd] PR [Inu=sal] e ——- |
@ I 1 I | T . I
m ” “ W spou s yae 103 “ S9N 159 < ”
I 1 I | 1 | peigEuZ wEpo |
] I i I I 1 I I
=] I | | | | 1 |
m TEIPIOTOR0eE) 7 (e R =) 7 SpoNEaH _ EET 7 _ et _ _ TOTEESRIION _ _ ERLIERTIN _

Fig. 10. Sequence Diagram for Workitem Substitution

Dynamic Flexibility using Worklets 21

YAWL Enging Warklet Selectar CheckedQulitern CheckedQuiChildliem
I I I
| | |
| Warklel Case Complate |
|

Check in Work 1tam

I
Get Work Item Record
1

—_————— e ———

I
I

Work ltem Record
1

I
|
> Map Output Data :
|
|
I
|

Remove [tem from Parent
=| I Remowve ltem
1 | 1]
Fig. 11. Sequence Diagram for Worklet Completion

| Replace Worklet

T
)
|
I Replace Worklet Case
+

I
1
Get Worklet for Item

Cancel Worklet Case

-
toffrom worklet
selection diagram

Worklet Case |D
=== tmm—————————

T

|

|

|

|

|

|

|

|

|

|

|

|
Result Message |
T
|

|

|

Fig. 12. Sequence Diagram for Worklet Replacement

22 Adams et. al.

YAWL Engine Werklet Selector CheckedOutitem CheckedQuiChilditem

Warkitam Cancelled

Gat Worklet for [tem
Il

|
|
Worklet Case ID

IF Workist Case ID not nuil |

Cancel Worklet Case

Remowve Item from Parent

|
, |
I
! |
[|
! |
' |
[|
L
|
I

'l I Remove ltam

|
I
|
|
I
I
|
|
I
|
|
|
T
I
b
|
I
I
|
|
I
|
1
I

|
|
! |
T
|

Fig. 13. Sequence Diagram for Workitem Cancellation

