Life After BPEL?

W.M.P. van der Aalst2, M. Dumas?, A.H.M. ter Hofstede?, N. Russell?,
H.M.W. Verbeek!, and P. Wohed?

! Eindhoven University of Technology, Eindhoven, The Netherlands.
w.m.p.v.d.aalst@tm.tue.nl
2 Queensland University of Technology, Brisbane, Australia.
{m.dumas,a.terhofstede,n.russell}@qut.edu.au
3 Université Henri Poincaré, Nancy, France. petia.wohed@cran.uhp-nancy.fr

Abstract. The Business Process Ezecution Language for Web Services
(BPEL) has emerged as a standard for specifying and executing pro-
cesses. It is supported by vendors such as IBM and Microsoft and posi-
tioned as the “process language of the Internet”. This paper provides a
critical analysis of BPEL based on the so-called workflow patterns. It also
discusses the need for languages like BPEL. Finally, the paper addresses
several challenges not directly addressed by BPEL but highly relevant
to the support of web services.

1 Introduction

Web services, an emerging paradigm for architecting and implementing busi-
ness collaborations within and across organizational boundaries, are currently
of interest to both software vendors and scientists. In this paradigm, the func-
tionality provided by business applications is encapsulated within web services:
software components described at a semantic level, which can be invoked by
application programs or by other services through a stack of Internet standards
including HTTP, XML, SOAP, WSDL and UDDI [3,12]. Once deployed, web
services provided by various organizations can be inter-connected in order to
implement business collaborations, leading to composite web services.

The Business Process Execution Language for Web Services (BPELAWS, or
BPEL for short) has emerged as the de-facto standard for implementing pro-
cesses based on web services [9]. Systems such as Oracle BPEL Process Man-
ager, IBM WebSphere Application Server Enterprise, IBM WebSphere Studio
Application Developer Integration Edition, and Microsoft BizTalk Server 2004
support BPEL, thus illustrating the practical relevance of this language. Al-
though intended as a language for connecting web services, its application is not
limited to cross-organizational processes. It is expected that in the near future
a wide variety of process-aware information systems [13] will be realized using
BPEL. Whilst being a powerful language, BPEL is difficult to use. Its XML
representation is very verbose and only readable to the trained eye. It offers
many constructs and typically things can be implemented in many ways, e.g.,
using links and the flow construct or using sequences and switches. As a result

only experienced users are able to select the right construct. Several vendors
offer a graphical interface that generates BPEL code. However, the graphical
representations are a direct reflection of the BPEL code and are not intuitive to
end-users. Therefore, BPEL is closer to classical programming languages than
e.g. the more user-friendly workflow management systems available today.

It is interesting to put BPEL in a historical perspective. In the seventies, peo-
ple like Skip Ellis [15], Anatol Holt [27], and Michael Zisman [48] were already
working on so-called office information systems, which were driven by explicit
process models. It is interesting to see that the three pioneers in this area inde-
pendently used Petri-net variants to model office procedures. In the seventies,
organizations were not connected and only few people inside one organization
were linked through some kind of network. During the seventies and eighties
there was great optimism about the applicability of office information systems.
Unfortunately, few applications succeeded. As a result of these experiences, both
the application of this technology and research almost stopped for a decade. Con-
sequently, hardly any advances were made in the eighties. In the nineties, once
again there was huge interest in these systems. The number of workflow prod-
ucts developed in the past decade and the many papers on workflow technology
illustrate the revival of office information systems. Today workflow management
systems are readily available [4,33,37] and workflow technology is hidden in
many applications, e.g., ERP, CRM, and PDM systems. However, their appli-
cation is still limited to specific industries such as banking and insurance. Since
2000 there has been a growing interest in web services. This resulted in a stack
of Internet standards (HTTP, XML, SOAP, WSDL, and UDDI) which needed
to be complemented by a process layer. Several vendors proposed competing
languages, e.g., IBM proposed WSFL (Web Services Flow Language) [32] build-
ing on FlowMark/MQSeries and Microsoft proposed XLANG (Web Services for
Business Process Design) [45] building on Biztalk. BPEL [9] emerged as a com-
promise between both languages.

The goal of this paper is to critically analyze BPEL. We analyze the language
itself using a patterns-based approach [5]. In addition, we discuss the focus of
BPEL. In our view organizations do not need to agree on a common execution
language. We will argue that there are more important issues to be addressed,
e.g., having a higher-level language to describe both processes and interactions
and being able to monitor running composite web-services/choreographies.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the BPEL language and its focus. In Section 3 we discuss existing work on
workflow patterns and relate this to BPEL. In Section 4 we question the need for
a language like BPEL. Section 5 proposes the real challenges we should focus on
in the context of BPEL: (1) generating and analyzing BPEL code (Section 5.1),
(2) “real” choreography (Section 5.2), and (3) process mining, conformance test-
ing and mediation (Section 5.3). Section 6 concludes the paper by providing some
pointers to the “Petri and Pi” initiative which aims at combining efforts on the-
ory, languages, tools, and applications in the web services domain.

2 BPEL

BPEL [9] supports the modeling of two types of processes: executable and ab-
stract processes. An abstract, (not executable) process is a business protocol,
specifying the message exchange behavior between different parties without re-
vealing the internal behavior for any one of them. This abstract process views
the outside world from the perspective of a single organization or (composite)
service. An executable process views the world in a similar manner, however,
things are specified in more detail such that the process becomes executable,
i.e., an executable BPEL process specifies the execution order of a number of
activities constituting the process, the partners involved in the process, the mes-
sages exchanged between these partners, and the fault and exception handling
required in cases of errors and exceptions.

A BPEL process itself is a kind of flow-chart, where each element in the pro-
cess is called an activity. An activity is either a primitive or a structured activity.
The set of primitive activities contains: invoke, invoking an operation on a web
service; receive, waiting for a message from an external source; reply, replying
to an external source; wait, pausing for a specified time; assign, copying data
from one place to another; throw, indicating errors in the execution; terminate,
terminating the entire service instance; and empty, doing nothing.

To enable the presentation of complex structures the following structured
activities are defined: sequence, for defining an execution order; switch, for
conditional routing; while, for looping; pick, for race conditions based on timing
or external triggers; f1low, for parallel routing; and scope, for grouping activities
to be treated by the same fault-handler. Structured activities can be nested and
combined in arbitrary ways. Within activities executed in parallel the execution
order can further be controlled by the usage of links (sometimes also called
control links, or guarded links), which allows the definition of directed graphs.
The graphs too can be nested but must be acyclic.

Asindicated in the introduction, BPEL builds on IBM’s WSFL (Web Services
Flow Language) [32] and Microsoft’s XLANG (Web Services for Business Process
Design) [45] and combines the features of a block structured language inherited
from XLANG with those for directed graphs originating from WSFL. As a result
simple things can be implemented in two ways. For example a sequence can be
realized using the sequence or flow elements (in the latter case links are used
to enforce a particular order on the parallel elements), a choice based on certain
data values can be realized using the switch or flow elements, etc. However, for
certain constructs one is forced to use the block structured part of the language,
e.g., a deferred choice (see next section and [5]) can only be modeled using the
pick construct. For other constructs one is forced to use the links, i.e., the more
graph-oriented part of the language, e.g., two parallel processes with a one-way
synchronization require a 1ink inside a flow. In addition, there are very subtle
restrictions on the use of links: “A link MUST NOT cross the boundary of a
while activity, a serializable scope, an event handler or a compensation handler...
In addition, a link that crosses a fault-handler boundary MUST be outbound,
that is, it MUST have its source activity within the fault handler and its target

activity within a scope that encloses the scope associated with the fault handler.
Finally, a link MUST NOT create a control cycle, that is, the source activity
must not have the target activity as a logically preceding activity, where an
activity A logically precedes an activity B if the initiation of B semantically
requires the completion of A. Therefore, directed graphs created by links are
always acyclic.” (see page 64 in [9]). All of this makes the language complex
for end-users. A detailed or complete description of BPEL is beyond the scope
of this paper. For more details, the reader is referred to [9] and various web
sites such as the web site of the OASIS technical committee on WS-BPEL:
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.

3 Patterns-based Analysis of BPEL

Based on earlier experiences in the workflow domain, we have evaluated BPEL
using the so-called workflow patterns [5]. The initial set of 20 workflow patterns
focused exclusively on control-flow aspects. We will briefly discuss our experi-
ences with BPEL based on these patterns. However, before doing so, we would
like to emphasize that the patterns initiative (www.workflowpatterns.com) is
not limited to control-flow. We have developed a comprehensive set of data pat-
terns [43]. These patterns describe the different ways of dealing with data in
the context of some process-aware information systems [13] (e.g., a workflow
management system like Staffware, an ERP system like SAP R/3, or integra-
tion middleware like WebSphere). In the context of workflow management, we
distinguish four classes of data patterns: data visibility (relating to the extent
and manner in which data elements can be viewed by various components of a
workflow process), data interaction (focusing on the manner in which data is
communicated between active elements within a workflow), data transfer (con-
sidering the means by which the actual transfer of data elements occurs between
workflow components and describe the various mechanisms by which data ele-
ments can be passed across the interface of a workflow component) and data-
based routing (characterizing the manner in which data elements can influence
the operation of other aspects of the workflow, particularly the control flow per-
spective). We have also developed a comprehensive set of resource patterns [42)
that capture the various ways in which resources are represented and utilized
in workflows. These patterns are also grouped into a number of categories: cre-
ation patterns, push patterns, pull patterns, detour patterns, auto-start patterns,
visibility patterns, and multiple resource patterns. Since they are less relevant in
the context of BPEL, we do not elaborate on them in any detail. Other related
work includes Colored Petri Net (CPN) patterns [38], Enterprise Application
Integration (EAI) patterns [26], and Service Interaction (SI) patterns [10].

For a detailed description and discussion of the patterns and more pointers we
refer the reader to www.workflowpatterns.com and [5,43]. As an illustration,
we describe control-flow pattern WCFP16 (Deferred Choice).

WCFP16 Deferred Choice A point in a process where one among several al-

ternative branches is chosen based on information which is not necessarily avail-
able when this point is reached. This differs from the normal exclusive choice, in
that the choice is not made immediately when the point is reached, but instead
several alternatives are offered, and the choice between them is delayed until the
occurrence of some event.
Example: When a contract is finalized, it has to be reviewed and signed either
by the director or by the operations manager, whoever is available first. Both
the director and the operations manager would be notified that the contract is
to be reviewed: the first one who is available will proceed with the review.
Note that WCFP16 is different from the WCFP 4 (i.e., Exclusive Choice):
The choice is not based on a decision or data but on a choice resolved by the
environment. BPEL clearly supports this pattern. The pick (for race conditions
based on timing or external triggers) directly offers the desired functionality.

Table 1. An analysis of BPEL based on the workflow control-flow patterns [47].

pattern |pattern name BPEL
WCFP1 |[sequence

WCFP2 |parallel split

WCFP3 |synchronization

WCFP4 |exclusive choice

WCFP5 [simple merge

WCFP6 |multi choice

WCFP7 [synchronizing merge

WCFP8 |multi merge

WCFP9 |discriminator

WCFP10|arbitrary cycles

WCFP11|implicit termination

WCFP12|multiple instances no synchronization
WCFP13|multiple instances design time knowledge
WCFP14|multiple instances runtime knowledge
WCFP15|multiple instances without a priori knowledge
WCFP16|deferred choice

WCFP17|interleave parallel routing
WCFP18|milestone

WCFP19|cancel activity

WCFP20|cancel case

T [S L

Tables 1 and 2 summarize the results of our pattern-based evaluation of
BPEL. For each control-flow and data pattern, we checked whether it is possible
to realize the pattern with BPEL. If BPEL directly supports the pattern through
one of its constructs, it is rated +. If the pattern is not directly supported, it
is rated 4+/-. Any solution that results in “spaghetti-like constructs” or is not
possible at all, is considered as giving no direct support and is rated —. These
ratings should be interpreted with care as indicated in [5,43].

We cannot give a detailed explanation of each pattern or of the evaluation of
BPEL based on this material (for this we refer to [5,43,47]). However, a general
observation that we would like to make is that BPEL is more powerful than

Table 2. An analysis of BPEL based on the workflow data patterns [43].

pattern |pattern name BPEL
WDP1 |task data +/-
WDP2 |block data -
WDP3 |scope data +

WDP4 |folder data -
WDP5 |multiple instance data -

WDP6 |case data +
WDP7 |workflow data -
WDPS8 |environment data +
WDP9 |data interaction between tasks +

WDP10 |data interaction — block task to decomposition
WDP11 |data interaction — decomposition to block task —
WDP12 |data interaction — to multiple instance task -
WDP13 |data interaction — from multiple instance task -

WDP14 |data interaction — case to case +/-
WDP15 |data interaction — task to environment — push-oriented +
WDP16 |data interaction — environment to task — pull-oriented +
WDP17 |data interaction — environment to task — push-oriented +/-
WDP18 |data interaction — task to environment — pull-oriented +/-

WDP19 |data interaction — case to environment — push-oriented -
WDP20 |data interaction — environment to case — pull-oriented -
WDP21 |data interaction — environment to case — push-oriented -
WDP22 |data interaction — case to environment — pull-oriented -
WDP23 |data interaction — workflow to environment — push-oriented| -
WDP24 |data interaction — environment to workflow — pull-oriented -
WDP25 |data interaction — environment to workflow — push-oriented| —
WDP26 |data interaction — workflow to environment — pull-oriented -
WDP27 |data passing by value — incoming +
WDP28 |data passing by value — outgoing +
WDP29 |data passing — copy in/copy out -
WDP30 |data passing by reference — unlocked +
WDP31 |data passing by reference — locked +/-
WDP32 |data transformation — input -
WDP33 |data transformation — output -
WDP34 |task precondition — data existence +/-
WDP35 |task precondition — data value +
WDP36 |task postcondition — data existence -
WDP3T7 |task postcondition — data value -
WDP38 |event-based task trigger +
WDP39 |data-based task trigger +/-
WDP40 |data-based routing +

most traditional process languages. The control-flow part of BPEL inherits al-
most all constructs of the block structured language XLANG and the directed
graphs of WSFL. Therefore, it is no surprise that BPEL indeed supports the
union of patterns supported by XLANG and WSFL. BPEL offers direct support
for the Multi Choice (WCFP6) and Synchronizing Merge (WCFP7), but not for
Arbitrary Cycles (WCFP10). This is a consequence of the “dead-path elimina-

tion” principle inherited from WSFL. BPEL, through the concept of serializable
scopes, is one of the few languages to support the Interleaved Parallel Routing
pattern (WCFP17), although with some restrictions. BPEL is also one of the
few languages that fully supports the notion of scope data elements (WDP3). It
provides support for a scope construct which allows related activities, variables
and exception handlers to be logically grouped together. The default binding for
data elements in BPEL is at case level and they are visible to all of the compo-
nents in a process. However, variables can be bound to scopes within a process
definition which may encompass a number of tasks and there is also the ability
for messages to be passed between tasks when control passes from one task to
another.

So the overall observation is that BPEL is an expressive language with some
limitations. However, BPEL is also a very complicated language with many
concepts. This complexity is reflected in the large number of issues that have
been raised within the OASIS WS-BPEL standardization committee (217 as of
June 2005), and which have delayed the release of the WS-BPEL 2.0 standard
specification.

4 Do we need BPEL?

In the previous section, we concluded that BPEL may be too complex but,
compared to other languages, it is also very powerful. In this section, we do not
focus on the specific qualities of BPEL. Instead we focus on the question: “Do
we need a language like BPEL?”.

Although BPEL can be used as a classical workflow language, its devel-
opment was triggered by the web service paradigm. Therefore, BPEL was in-
tended initially for pure cross-organizational processes in a web services context:
“BPEL4WS provides a language for the formal specification of business processes
and business interaction protocols. By doing so, it extends the Web Services in-
teraction model and enables it to support business transactions.” (see page 1
in [9]). However, it can also be used to support intra-organizational processes.
The authors of BPEL [9] envision two possible uses of the language: “Business
processes can be described in two ways. Executable business processes model
actual behavior of a participant in a business interaction. Business protocols, in
contrast, use process descriptions that specify the mutually visible message ex-
change behavior of each of the parties involved in the protocol, without revealing
their internal behavior. The process descriptions for business protocols are called
abstract processes. BPEL is meant to be used to model the behavior of both ex-
ecutable and abstract processes.” In our view, executable and abstract processes
should not be supported by a single language. Most attention has been devoted
to BPEL as an execution language. In our opinion BPEL failed as a language
for modeling abstract processes. Moreover, a BPEL specification is always given
from the viewpoint of one of the interacting partners. Web Services provided by
partners can be used to perform work in a BPEL business process. Invoking an
operation on such a service is a basic activity that can be specified using BPEL.

Figure 1 shows the two possible uses of BPEL. The figure clearly illustrates that
in both cases the work is seen from the perspective of one of the partners!

BPEL partners BPEL

executable code non-executable
- code

partners

000E

(a) Executable business process model (b) Abstract business process model

Fig. 1. The two ways in which BPEL can be used.

Figure 1 raises the question why every partner should standardize on BPEL
as a process language. A partner providing a service may implement its underly-
ing processes in any language without the other partner knowing, i.e., interacting
partners do not need to agree on a language like BPEL. Therefore, the answer
to “Do we need a language like BPEL?” is No! Nevertheless, BPEL has become
the de-facto standard and may in the future facilitate organizations migrating
from one system to another. In addition, BPEL incorporates a number of spe-
cialized features for web services development including direct support for XML
data definition and manipulation, a dynamic binding mechanism based on ex-
plicit manipulation of endpoint references, a declarative mechanism for correlat-
ing incoming messages to process instances (which is essential for asynchronous
communication), etc. As such, BPEL may be seen as an attractive alternative
to conventional (object-oriented) programming languages when it comes to de-
veloping web services.

5 Let us focus on the real challenges!

Although a language like BPEL is not essential for parties to cooperate, its dom-
inance raises the question of how to facilitate the use of BPEL and to identify the
missing functionality. In other words: we want to address the “real” challenges
in the context of BPEL. This is the reason the title of this paper is “Life af-
ter BPEL?”. In this section we briefly discuss three challenges: “generating and
analyzing BPEL code”, “real choreography”, and “process mining, conformance
testing, and mediation”.

5.1 Generating and Analyzing BPEL Code

Since BPEL is increasingly supported by various engines it becomes interesting
to link it to other types of models. This is useful for two reasons: (1) BPEL
more closely resembles a programming language than a modeling language and
(2) BPEL itself does not allow for any form of analysis other than being exe-
cutable (e.g., no verification, performance analysis, etc.). Therefore, there are
two interesting translations: (1) a translation from a “higher-level” notation to
BPEL and (2) a translation from BPEL to a model that allows for analysis.

Until now, attention has focused on the second translation. Several attempts
have been made to capture the behavior of BPEL in a formal way. Some ad-
vocate the use of finite state machines [19-21], others process algebras [18, 31],
and yet others use abstract state machines [16,17] or Petri nets [39,35,44]. A
comparative summary of mappings from BPEL to formal languages is given in
Table 3. The columns of the table correspond to the following criteria:

— Tech indicates the formalization technique used: FSM for finite state ma-
chines, PA for Process Algebra, ASM for Abstract State Machines and PN
for Petri Nets.

— SA indicates whether the mapping covers structured activities fully (+),
partially (+/-) or not at all (). It can be seen that this feature is covered
by all proposed mappings.

— CL indicates whether the formalization covers control links. Here a + /- rat-
ing is given for partial mappings of control links (e.g. not covering join con-
ditions which is a feature associated to control links).

— FH indicates whether the formalization covers event and exception handling.
Some references cover fault handling, but do not cover compensation and/or
event handling, in which case, a +/— rating is assigned.

— Comm indicates whether the mapping can be applied to systems of intercon-
nected BPEL processes (+) or if they are restricted to individual processes
(-). In the former case, it is possible to use the mapping to detect potential
mismatches between two or more BPEL processes which are expected to
communicate with each other.

— TAV indicates whether a tool for automatic verification is provided. Some
authors [19, 31] have developed and/or used tools for BPEL verification but
only to perform simple syntactic checks such as detecting cyclic dependencies
generated by control links, or unnecessary checks such as deadlock-freeness of
individual BPEL processes.! In these cases a +/— rating is given. This latter
rating is also given to proposals where formal analysis is possible but requires
significant manual steps. Finally, some authors refer to the possibility of
performing formal verification [18,17], but do not develop any automated
means of doing so. In this case, a — rating is given.

In industry, various tools and mappings are being developed to generate
BPEL code from a graphical representation. Tools such as the IBM WebSphere

! Individual BPEL processes are deadlock-free by construction [35].

Table 3. A comparative summary of some of the related work on BPEL formalization
and analysis.

Tech |[SA| CL | EH |Comm |TAV
21] [FSM|+| - -] + | +
200 |FSM|+| - | — | + |+/-
[19] |FSM|+| - |+/-| - |+/-
8] |PA |+| |+ | - | -
31 [PA |+ |+ | | — |[+/-
(17 [ASM| + |+/-| - | - | -
[35,44])|PN |+ [+/-| + | + |+/-
B9 PN [+ |+ |+]| - |+

Choreographer and the Oracle BPEL Process Manager offer a graphical notation
for BPEL. However, this notation directly reflects the code and there is no
intelligent mapping. This implies that users have to think in terms of BPEL
constructs (e.g., blocks, syntactical restrictions on links, etc.). More interesting
is the work of Stephen White that discusses the mapping of BPMN to BPEL
[46] and the work by Jana Koehler and Rainer Hauser on removing loops in the
context of BPEL [30]. However, none of these publications provides a mapping of
some (graphical) process modeling language onto BPEL: [46] merely presents the
problem and discusses some issues using examples and [30] focuses on only one
piece of the puzzle. This motivated us to develop a mapping from Colored Petri
Nets (CPNs) to BPEL [6]. Clearly, both types of mappings are highly relevant.
However, the quality of these mappings needs to be improved and there should
be more agreement on the precise semantics of BPEL.

5.2 Real Choreography

As indicated in Section 4 interacting partners do not need to agree on a language
like BPEL. However, they need to agree on an overall global process. Currently
terms like choreography and orchestration are used to refer to the problem of
agreeing on a common process. Some people distinguish between choreography
and orchestration, e.g., “In orchestration, there’s someone — the conductor —
who tells everybody in the orchestra what to do and makes sure they all play in
sync. In choreography, every dancer follows a pre-defined plan - everyone inde-
pendently of the others.” We will not make this distinction and simply assume
that choreographies define collaborations between interacting parties, i.e., the co-
ordination process of interconnected web services all partners need to agree on.
Figure 2 illustrates the notion of a choreography.

Within the Web Services Choreography Working Group of the W3C, a work-
ing draft defining version 1.0 of the Web Services Choreography Description Lan-
guage (WS-CDL) has been developed [29]. The scope of WS-CDL is defined as
follows: “Using the Web Services Choreography specification, a contract con-
taining a global definition of the common ordering conditions and constraints
under which messages are exchanged, is produced that describes, from a global
viewpoint, the common and complementary observable behavior of all the par-
ties involved. Each party can then use the global definition to build and test

e e
BPEL choreography

Fig. 2. A choreography defines collaborations between interacting parties.

solutions that conform to it. The global specification is in turn realized by a
combination of the resulting local systems, on the basis of appropriate infras-
tructure support. The advantage of a contract based on a global viewpoint as
opposed to any one endpoint is that it separates the overall global process be-
ing followed by an individual business or system within a domain of control (an
endpoint) from the definition of the sequences in which each business or system
exchanges information with others. This means that, as long as the observable
sequences do not change, the rules and logic followed within a domain of control
(endpoint) can change at will and interoperability is therefore guaranteed.” [29].
This definition is consistent with the critique in Section 4 and Figure 2. Unfor-
tunately, like most standards in the web services stack, the language is verbose
and complex. Somehow the essence as shown in Figure 2 is lost. Moreover, the
language again defines concepts such as “sequence”, “choice”, and “parallel” in
some ad-hoc notation with unclear semantics. This suggests that some parts of
the language are an alternative to BPEL while they are not. The main problem
is that WS-CDL is not declarative. A choreography should allow for the spec-
ification of the “what” without having to state the “how”. This is similar to
the difference between a program and its specification. One can specify what an
ordered sequence is without specifying an algorithm to do so!

In [1] we describe a more theoretical approach to the problem. The paper
describes the P2P (Public-To-Private) approach which addresses one of the most
notorious problems in this domain: How to design an inter-organizational work-
flow such that there is local autonomy without compromising the consistency of
the overall process. The approach uses a notion of inheritance and consists of
three steps: (1) create a common understanding of the inter-organizational work-
flow by specifying the shared public workflow, (2) partition the public workflow
over the organizational entities involved, and (3) for each organizational entity:
create a private workflow which is a subclass of the relevant part of the pub-
lic workflow. In [1] it is shown that this approach avoids typical anomalies in
business-to-business collaboration (e.g., deadlocks and livelocks) and yields an

inter-organizational workflow which is guaranteed to realize the behavior speci-
fied in the public workflow. The P2P approach relies heavily on the use of Petri
nets and a formal notion of inheritance. Nevertheless, it would be interesting
to adopt these ideas in the context of languages such as WS-CDL and BPEL.
Another, more declarative, approach could be based on temporal logic [34,40].
Languages such as Linear Temporal Logic (LTL) allow for the definition and
verification of desirable behavior [23-25].

5.3 Process Mining, Conformance Testing, and Mediation

Assuming that there is a running process (possibly implemented using BPEL)
and a choreography specification (possibly specified in WS-CDL), it is interesting
to check whether each partner/web-service is well behaved. Note that partners
have no control over each other’s services. Moreover, partners will not expose
the internal structure and state of their services. The closed and uncontrollable
nature of web-services may generate a variety of problems. Fortunately, process
mining [7] and conformance testing [2] techniques may be of assistance. For both
we need to assume the existence of an event log [7]. For example, one may log
the messages exchanged between all parties involved in a choreography (either
distributed or through some coordinator). Using this event log, we may use
process mining techniques to reconstruct part of the process that actually took
place. This way one can “discover” the actual choreography. However, in an ideal
situation this choreography is given in terms of a predefined process model. The
coexistence of event logs and process models raises the question of conformance.
This question may be viewed from two angles. First of all, the model may be
assumed to be “correct” because it represents the way partners should work,
and the question is whether the events in the log are consistent with the process
model. For example, the log may contain “incorrect” event sequences not possible
according to the model. This may indicate violations of choreography all parties
previously agreed upon. Second, the event log may be assumed to be “correct”
because it is what really happened. In the latter case the question is whether
the choreography that has been agreed upon is no longer valid and should be
modified. To actually measure conformance, we have developed a tool called
Conformance Checker. This tool has been developed in the context of the ProM
framework?. The ProM framework offers a wide range of tools related to process
mining, i.e., extracting information from event logs [7]. At this point in time we
are investigating the addition of plug-ins specific for the mining of web services.
Some preliminary investigations have been reported in [14, 22].

Another prominent issue, complementary to conformance, is that of media-
tion. When it is found (either a priori through model comparison or a posteriori
through mining), that the conversation protocol that a given service provides
does not match the conversation protocol that it is expected to provide, there
are basically two options: (1) modify the service to suit the new expected conver-
sation protocol; or (2) mediate between the conversation protocol of the service

2 Both documentation and software can be downloaded from www . processmining.org.

as it is, and the conversation protocol as it should be. The former option is usu-
ally not suitable because the same service may interact with other services that
rely on the conversation protocol that the service currently provides. In other
words, the same service may participate in different collaborations such that in
each of these collaborations a different conversation protocol is expected from it.
Thus, mediation between the provided conversation protocol of a service, and the
various conversation protocols that are expected from it (i.e., the required con-
versation protocols), is generally unavoidable. This issue has been widely studied
in the area of software components where it is known as adaptation. However,
most of the work on component adaptation focuses on structural mediation (i.e.,
mediating different structural interfaces and specifically, between different data
types). Since services are expected to participate in collaborations driven by pro-
cess models, behavioral mediation is a prominent requirement. Some work has
been done in this area both in the components and services community [28, 11, 8],
but there is still no overarching framework and supporting tools for behavioral
service mediation are missing.

6 Petri and Pi

In discussions, Petri nets [41] and Pi calculus [36] are often mentioned as two
possible formal languages that could serve as a basis for languages such as BPEL
and WS-CDL. Some vendors claim that their systems are based on Petri nets or
Pi calculus and other vendors suggest that they do not need a formal language
to base their system on. In essence there are three “camps” in these discussions:
the “Petri net camp”, the “Pi calculus” (or process algebra) camp, and the
“Practitioners camp” (also known as the “No formalism camp”). This was the
reason for starting the “Petri nets and Pi calculus for business processes” working
group (http://www.smartgroups.com/groups/petri_and pi) in June 2004. Its
goal is to have discussions and meetings on the formal foundations of BPM in
general and languages like BPEL in particular. The working group was initiated
by Robin Milner, Wil van der Aalst, Rob van Glabbeek, Roger Whitehead, and
Keith Harrison-Broninski. The first meeting of this working group took place in
June 2005 at Eindhoven University of Technology. Interesting elements of the
first meeting were the identification of meaningful patterns and the sharing of
solutions of common examples using languages such as BPEL, WS-CDL, colored
Petri nets, Pi calculus, YAWL, statecharts, CCS, SOS, RAD, etc.

Most of the topics discussed in this paper are relevant to the Petri and Pi
working group. In fact, this paper was inspired by the Eindhoven workshop of
this group. Interested readers are invited to join this working group by sending
an e-mail to petri_and_pi-owner@smartgroups.com or one of its members with
the request to become a member.

References

1. W.M.P. van der Aalst. Inheritance of Interorganizational Workflows: How to agree

10.

11.

12.

13.

14.

15.

16.

to disagree without loosing control? Information Technology and Management
Journal, 4(4):345-389, 2003.

W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool for
Delta Analysis and Conformance Testing. Requirements Engineering Journal, 2005
(to appear).

W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Web Service Composi-
tion Languages: Old Wine in New Bottles? In Proceeding of the 29th EUROMICRO
Conference: New Waves in System Architecture, pages 298-305. IEEE Computer
Society, Los Alamitos, CA, 2003.

W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

W.M.P. van der Aalst and K.B. Lassen. Translating Workflow Nets to BPEL4WS.
BETA Working Paper Series, Eindhoven University of Technology, Eindhoven,
2005.

W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237-267, 2003.

M. Altenhofen, E. Boerger, and J. Lemcke. An execution semantics for mediation
patterns. In Proceedings of the BPM2005 Workshops: Workshop on Choreography
and Orchestration for Business Process Managament, Nancy, France, September
2005.

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Standards proposal by BEA
Systems, International Business Machines Corporation, and Microsoft Corpora-
tion, 2003.

A. Barros, M. Dumas, and A.H.M. ter Hofstede. Service Interaction Patterns: To-
wards a Reference Framework for Service-based Business Process Interconnection.
QUT Technical report, FIT-TR-2005-012, Queensland University of Technology,
Brisbane, 2005. (To appear in BPM 2005.)

B. Benatallah, F. Casati, D. Grigori, H. Motahari-Nezhad, and F. Toumani. Devel-
oping Adapters for Web Services Integration. In Proceedings of the International
Conference on Advanced Information Systems Engineering (CAiSE), Porto, Por-
tugal, June 2005. Springer Verlag.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems. Wiley & Sons, 2005.

S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining. Technical
Report TUV-1841-2004-16, Information Systems Institute, Vienna University of
Technology, Wien, Austria, 2004.

C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information
Flow. In Proceedings of the Conference on Simulation, Measurement and Modeling
of Computer Systems, pages 225—240, Boulder, Colorado, 1979. ACM Press.

D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control
flow. In Proc. 12th International Workshop on Abstract State Machines, pages
131-151, Paris, France, 2005.

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

R. Farahbod, U. Gléasser, and M. Vajihollahi. Specification and validation of the
business process execution language for web services. In Abstract State Machines
2004, volume 3052 of Lecture Notes in Computer Science, pages 79-94, Lutherstadt
Wittenberg, Germany, May 2004. Springer-Verlag, Berlin.

A. Ferrara. Web services: A process algebra approach. In Proceedings of the 2nd
international conference on Service oriented computing, pages 242251, New York,
NY, USA, 2004. ACM Press.

J.A. Fisteus, L.S. Fernandez, and C.D. Kloos. Formal verification of BPEL4WS
business collaborations. In Proceedings of the 5th International Conference on
Electronic Commerce and Web Technologies (EC-Web ’04), volume 3182 of Lecture
Notes in Computer Science, pages 79-94, Zaragoza, Spain, August 2004. Springer-
Verlag, Berlin.

H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web
Service Composition. In Proceedings of 18th IEEE International Conference on
Automated Software Engineering (ASE), pages 152161, Montreal, Canada, Octo-
ber 2003.

X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In
International World Wide Web Conference: Proceedings of the 13th international
conference on World Wide Web, pages 621630, New York, NY, USA, 2004. ACM
Press.

W. Gaaloul, S. Bhiri, and C. Godart. Discovering Workflow Transactional Be-
havior from Event-Based Log. In On the Move to Meaningful Internet Systems
2004: CooplS, DOA, and ODBASE: OTM Confederated International Conferences,
CooplS, DOA, and ODBASE 2004, volume 3290 of Lecture Notes in Computer Sci-
ence, pages 3—18, 2004.

D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. In Proceedings of the 16th IEEE International
Conference on Automated Software Engineering (ASE’01), pages 412-416. IEEE
Computer Society Press, Providence, 2001.

K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Proceedings
of the 16th IEEE International Conference on Automated Software Engineering
(ASE’01), pages 135-143. IEEE Computer Society Press, Providence, 2001.

K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Pro-
ceedings of the 8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2002), volume 2280 of Lecture Notes
in Computer Science, pages 342-356. Springer-Verlag, Berlin, 2002.

G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley Profes-
sional, Reading, MA, 2003.

A. W. Holt. Coordination Technology and Petri Nets. In Advances in Petri Nets
1985, volume 222 of Lecture Notes in Computer Science, pages 278-296. Springer-
Verlag, Berlin, 1985.

H.W. Schmidt and R.H. Reussner. Generating adapters for concurrent component
protocol synchronisation. In Proceedings of the Fifth IFIP International Confer-
ence on Formal Methods for Open Object-Based Distributed Systems (FMOODS),
Enschede, The Netherlands, March 2002. Kluwer Academic Publishers.

N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Services
Choreography Description Language, Version 1.0. W3C Working Draft 17-12-04,
2004.

J. Koehler and R. Hauser. Untangling Unstructured Cyclic Flows A Solu-
tion Based on Continuations. In On the Move to Meaningful Internet Systems

31.

32.
33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

48.

2004: CooplS, DOA, and ODBASE: OTM Confederated International Conferences,
CooplS, DOA, and ODBASE 2004, volume 3290 of Lecture Notes in Computer Sci-
ence, pages 121-138, 2004.

M. Koshkina and F. van Breugel. Verification of Business Processes for Web Ser-
vices. Technical report CS-2003-11, York University, October 2003. Available from:
http://www.cs.yorku.ca/techreports/2003/.

F. Leymann. Web Services Flow Language, Version 1.0, 2001.

F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

A. Martens. Analyzing Web Service Based Business Processes. In Proceedings of the
8th International Conference on Fundamental Approaches to Software Engineering
(FASE 2005), volume 3442 of Lecture Notes in Computer Science, pages 19-33.
Springer-Verlag, Berlin, 2005.

R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge
University Press, Cambridge, UK, 1999.

M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin, 2004.
N.A. Mulyar and W.M.P. van der Aalst. Patterns in Colored Petri Nets. BETA
Working Paper Series, WP 139, Eindhoven University of Technology, Eindhoven,
2005.

C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede, and
H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-BPEL.
BPM Center Report BPM-05-13, BPMcenter.org, 2005.

A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Annual Symposium on the Foundations of Computer Science, pages 46-57. IEEE
Computer Society Press, Providence, 1977.

W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.
N. Russell, W.M.P.van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Work-
flow Resource Patterns: Identification, Representation and Tool Support. In Pro-
ceedings of the 17th Conference on Advanced Information Systems FEngineering
(CAiSE’05), volume 3520 of Lecture Notes in Computer Science, pages 216-232.
Springer-Verlag, Berlin, 2005.

N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Work-
flow Data Patterns: Identification, Representation and Tool Support. Accepted
for publication in Proceedings of the 24th International Conference on Conceptual
Modeling (ER’2005), Springer-Verlag, Berlin, 2005.

C. Stahl. Transformation von BPEL4AWS in Petrinetze (In German). Master’s
thesis, Humboldt University, Berlin, Germany, 2004.

S. Thatte. XLANG Web Services for Business Process Design, 2001.

S. White. Using BPMN to Model a BPEL Process. BPTrends, 3(3):1-18, March
2005.

P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis
of Web Services Composition Languages: The Case of BPEL4AWS. In 22nd Inter-
national Conference on Conceptual Modeling (ER 2003), volume 2813 of Lecture
Notes in Computer Science, pages 200-215. Springer-Verlag, Berlin, 2003.

M.D. Zisman. Representation, Specification and Automation of Office Procedures.
PhD thesis, University of Pennsylvania, Warton School of Business, 1977.

