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Abstract. Workflow management systems are implemented to support the mod-
elling, analysis and enactment of rigidly structured business processes. However,
they typically have difficulty supporting unexpected or developmental change oc-
curring in the work practices they model, and providing adequate support for ex-
ceptions, or deviations from the process model, even though such deviations are a
common occurrence for almost all processes. These limitations mean a large sub-
set of business practices do not easily map to the inflexible modelling frameworks
imposed, and so have inhibited wider acceptance.
This paper presents the basis of an approach for dynamic flexibility, evolution and
exception handling in workflows through the support of flexible work practices,
and based, not on proprietary frameworks, but on accepted ideas of how people
actually work. A set of principles have been derived from a sound theoretical base
and applied to the development ofworklets, a repertoire of self-contained sub-
processes that can be applied in a variety of situations depending on the context
of the particular work instance.

1 Introduction

Organisations are constantly seeking to improve the efficiency and effectiveness of
their business processes. One approach aimed at supporting these objectives has been
the implementation of workflow management systems to configure and control busi-
ness processes [1], by supporting their modelling, analysis and enactment [2]. Other
key benefits workflow management systems seek to bring to an organisation include
better process control, improved customer service, higher maintainability and business
process evolution [3–5].

The use of workflow management systems has grown through their support for the
modelling of rigidly structured business processes that in turn derive well-defined work-
flow instances [6, 7]. However, the frameworks imposed make it difficult to support (i)
dynamic evolution (i.e. modifying process instances during execution) following unex-
pected or developmental change in the business processes being modelled [8]; and (ii)



deviations from the process model at runtime [2, 9]. These limitations mean a large sub-
set of business processes do not easily map to the rigid modelling frameworks provided
[10].

Without support for dynamic evolution, the occurrence of an unexpected deviation
(or exception) requires either suspension of execution while the deviation is handled
manually, or an entire process abort. However, since most processes are long and com-
plex, neither intervention nor process termination are satisfactory solutions [11]. Man-
ual exception handling incurs an added penalty: the corrective actions undertaken are
not added to ‘organisational memory’ [12, 13], and so natural process evolution is not
incorporated into future iterations of the process. Other evolution issues include prob-
lems of migration, synchronisation and version control [14, 15].

Thus the installation base of workflow management systems has been limited, due
to the lack of flexibility inherent in a framework that, by definition, imposes rigidity.
Process models are ‘system-centric’, orstraight-jacketed[16] into the supplied frame-
work, rather than truly reflecting the way work is actually performed. As a result, users
are forced to work outside of the system, and/or constantly revise the static process
model, in order to successfully support their activities, thereby negating the efficiency
gains sought by implementing a workflow solution in the first place.

It is therefore desirable to extend the capabilities of WfMSs, so that the benefits
offered to organisations employing rigidly defined, ‘assembly-line’ processes could also
be enjoyed by those businesses which employ more flexible processes.
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Fig. 1. Worklet Conceptual Diagram

This paper introduces the concept of‘worklets’, a repertoire of self-contained sub-
processes and associated selection and exception handling rules (fig. 1), to support the
modelling, analysis and enactment of business processes, which is grounded in a formal
set of principles of work practices calledActivity Theory. We intend that this approach
will directly provide for dynamic exception handling, ad-hoc change and process evo-
lution, without having to resort to off-system intervention and/or system downtime.



This paper is organised as follows: Section 2 surveys issues of dynamic evolution
and exception handling in workflows, provides a brief overview of Activity Theory and
lists relevant principles derived from it, then introduces the worklet paradigm. Section
3 describes how the worklet approach utilisesRipple Down Rulesto achieve contextual,
dynamic selection of worklets at runtime. Section 4 presents the worklet dynamic selec-
tion process, while Section 5 describes the approach for dynamic exception handling.
Section 6 discusses related work, and finally Section 7 outlines future directions and
concludes the paper.

2 Achieving Flexibility through Worklets

Workflow management systems provide support for business processes that are gener-
ally predictable and repetitive. Process exceptions or deviations are largely uncatered
for, even though dealing with them forms a substantial proportion of the everyday tasks
carried out in an organisation [9, 17, 18]. Realistically, every executing instance of a
work process will incorporate some deviation from the plan. Thus, formal representa-
tions of business processes may be said to provide merely a contingency around which
tasks can be formulated dynamically [19]. In this sense, a work plan may be considered
a resource which mediates activities towards their objective, rather than a prescriptive
blueprint that must be strictly adhered to. Deviations from the plan should be consid-
ered as natural and valuable parts of the work activity, which provide the opportunity
for learning and thus engender natural evolution of the plan. The prescriptive, assembly-
line frameworks imposed by workflow management systems limit the ability to model
and enact flexible work practices where exceptions to the rule are a normal part of every
work activity [16]. Rather than continue to try to force business processes into inflexible
frameworks (with limited success), a more flexible approach is needed that is based on
accepted ideas of how people actually work.

A powerful set of descriptive and clarifying principles that describe how work is
conceived, performed and reflected upon isActivity Theory, which focusses on un-
derstanding human activity and work practices, incorporating notions of intentional-
ity, history, mediation, collaboration and development [20]. (An exploration of Activity
Theory is beyond the scope of this paper; more details can be found in: [21, 22]). In
[23], the authors undertook a detailed study of Activity Theory and derived from it a set
of principles that describe the nature of participation in organisational work practices.
Briefly, the relevant principles are:

1. Activities arehierarchical (consist of one or more actions),communal(involve a
community of participants working towards a common objective),contextual(con-
ditions and circumstances deeply affect the way the objective is achieved),dynamic
(evolve asynchronously), andmediated(by tools, rules and divisions of labour).

2. Actions (i.e. tasks) are undertaken and understood contextually. A repertoire of
actions is maintained and made available to any activity, which may be performed
by making contextual choices from the repertoire.

3. A plan is not a prescription of work to be performed, but merely a guide which is
modified during execution depending on context.



4. Exceptions are merely deviations from a plan, and will occur with every execu-
tion, giving rise to learning experiences which can then be incorporated into future
instantiations of the plan.

Consideration of these derived principles have led to the conception of a flexible work-
flow support system that:

– regards the process model as a guide to an activity’s objective, rather than a pre-
scription for it;

– provides for a dynamic repertoire (or catalogue) of actions to be made available for
each task at each execution of a process model;

– provides for choices to be made dynamically from the repertoire at runtime by
considering the specific context of the executing instance; and

– allows those contextual choices to be made, not only for each task, but for ap-
propriate exception handling techniques using the same selection and invocation
mechanism, thus incorporating process exceptions, not only as part of the model,
but as normal and valuable events that lead to system learning and therefore natural
process evolution.

Each task of a process is linked to a repertoire of actions, one of which is contex-
tually chosen at runtime to carry out the task. In this work, we present these repertoire-
member actions as“worklets” . In effect, a worklet is a small, self-contained, complete
workflow process which handles one specific task (action) in a larger, composite process
(activity). A sequence of worklets are chained to form an entire workflow process. Note
that in Activity Theory terms, a worklet may represent one action within an activity, or
may represent an entire activity (for example, a top-level or manager worklet).
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Fig. 2. Worklet: Coordinate Conference Publications (Top Level)

To denote the sequence of the composite process, a top-level or manager worklet
is developed that captures the workflow at a macro level. From that manager process,
worklets are contextually selected and invoked from the repertoire of each task (see
Section 4). (Figure 2 shows aConference Proceedingsexample of a top level worklet,
using YAWL notation [24] – ‘Select Final Papers’ is an example of an atomic task, ‘Call
for Papers’ a composite task and ‘Distribute Paper’ a multiple-instance composite task).

In addition, for each anticipated exception (an event that is not expected to occur in
most instances), a complementary worklet for handling the event may be defined, to be
dynamically incorporated into a running workflow instance on an as-needed basis (see
Section 5). Further, worklets to handle these potential events are constructed inexactly
the same wayas those for standard processes. In the occurrence of an unanticipated



exception (i.e. an event for which a worklet has not yet been defined), then either an
existing worklet can be selected from the repertoire, or one may be adapted on the fly to
handle the immediate situation, allowing execution to continue. Most importantly, the
method used to handle an exception is captured by the system, and so a history of the
event and the method used to handle it is recorded for future instantiations. In this way,
the process model undergoes a dynamic natural evolution. At the same time, a repertoire
for each task is dynamically constructed as different approaches to completing a task
are developed, derived from the context of each process instance.

3 Context and Worklet Selection

For any situation, there are multiple environmental, experiential and personal factors
that may combine to influence a choice of action. Those factors are considered to be
the contextof the situation. The consideration of context plays a crucial role in many
diverse domains, including philosophy, pragmatics, semantics, cognitive psychology
and artificial intelligence [25]. In order to realise the worklet approach to workflow
management, the situated contextual factors relevant to each case instance are required
to be quantified and recorded [26] so that the appropriate worklet can be ‘intelligently’
chosen from the repertoire at runtime.

The types of contextual data that may be recorded and applied to a business case
may be categorised as follows (examples are drawn from theConference Proceedings
process):

– Generic (case independent):data attributes that can be considered likely to occur
within any process (of course, the data values change from case to case). Such data
would include descriptors such as created when, created by, times invoked, last
invoked, current status; and agent or worker descriptors such as experience, skills,
rank, history with this worklet and so on.

– Case dependent witha-priori knowledge: that set of data that are known to be
pertinent to a particular case or instantiation. Generally, this data set reflects the
data objects of a particular process instance. Examples are: the dates invitations,
papers and reviews sent and received; timeouts both approaching and expired; and
actual committee member, reviewer and paper data.

– Case dependent with noa-priori knowledge: that set of data that only becomes
known when the case is active and deviations from the process occur. Examples in
this category may include data that describe a missing paper, a request to withdraw
a paper or a conference cancellation.

Each worklet is a representation of a particular situated action that relies on the rel-
evant context of each case instance, derived from case data, to determine whether it is
invoked to fulfil a task in preference to another worklet in the repertoire. The actual
worklet selection process is achieved through the use of modifiedRipple Down Rules
(RDR), which comprise a hierarchical set of rules with associated exceptions, first de-
vised by Compton and Jansen [27].

The fundamental feature of RDR is that it avoids the difficulties inherent in attempt-
ing to compile a systematic understanding, organisation and assembly of all knowledge



in a particular domain. The RDR method is well established and fully formalised [28]
and has been implemented as the basis for a variety of commercial applications, includ-
ing systems for reporting DNA test results, environmental testing, intelligent document
retrieval, fraud detection based on patterns of behaviour, personal information manage-
ment and data mining of large and complex data sets [29].

An RDR Knowledge Base is a collection of simple rules of the form “ifcondition
thenconclusion”, conceptually arranged in a binary tree structure (fig. 3). Each rule
node may have a false (‘or’) branch and/or a true (‘exception’) branch to another rule
node, except for the root node, which contains a default rule and can have a true branch
only. If a rule is satisfied, the true branch is taken and the associated rule is evaluated; if
it is not satisfied, the false branch is taken and its rule evaluated [30]. When a terminal
node is reached, if its rule is satisfied, then its conclusion is taken; if its rule is not
satisfied, then the conclusion of the last rule satisfied on the path to that node is taken.
For terminal nodes on a true branch, if its rule is not satisfied then the last rule satisfied
will always be that of its parent.

This tree traversal gives RDR impliedlocality - a rule on an exception branch is
tested for applicability only if its parent (next-general) rule is also applicable - which
allows for general rules to be defined first with refinements added later as the need arises
[28].
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Fig. 3. Conceptual Structure of a Ripple Down Rule (Assess ClaimExample)



If the conclusion returned is found to be unsuitable for a particular case instance, a
new rule is formulated that defines the contextual circumstances of the instance and is
added as a new leaf node using the following algorithm:

– If the conclusion returned was that of a satisfied terminal rule, then the new rule is
added as a local exception to the exception ‘chain’ via a new true branch from the
terminal node.

– If the conclusion returned was that of a non-terminal, ancestor node (that is, the
condition of the terminal rule was not satisfied), then the new rule is added via a
new false branch from the unsatisfied terminal node.

In essence, each added exception rule is a refinement of its parent rule. This method
of defining new rules allows the construction and maintenance of the KB by “sub-
domain” experts (i.e. those who understand and carry out the work they are responsible
for) without regard to any engineering or programming assistance or skill [31].

Each node incorporates a set of case descriptors, called the ‘cornerstone case’,
which describe the actual case that was the catalyst for the creation of the rule. The
condition for the new rule is determined by comparing the descriptors of the current
case to those of the cornerstone case and identifying a sub-set of differences. Not all
differences will be relevant – it is only necessary to determine the factor or factors that
make it necessary to handle the current case in a different fashion to the cornerstone
case to define a new rule. The identified differences are expressed as attribute-value
pairs, using the normal conditional operators. The current case descriptors become the
cornerstone case for the newly formulated rule; its condition is formed by the identified
attribute-values and represents the context of the case instance that caused the addition
of the rule.

Rather than impose the need for a closed knowledge base that must be completely
constructeda-priori, this method allows for the identification of that part of the universe
of discourse that differentiates a particular caseas the need arises. Indeed, the only con-
text of interest is that needed for differentiation, so that processes evolve dynamically
through experience gained as they are used.

RDR are well suited to the worklet selection process, since it:

– provides a method for capturing relevant, localised contextual data;
– provides a hierarchical structuring of contextual rules;
– explicitly provides for the definition of exceptions at a local level;
– does not require expert knowledge engineers for its maintenance; and
– allows a rule set to evolve and grow, thus providing support for a dynamic learning

system.

A worker defines the contextual conditions as a natural part of the work they per-
form. This level of human involvement — at the ‘coalface’, as it occurs — greatly
simplifies the capturing of contextual data. Thus RDR allows the construction of an
evolving, highly tailored local knowledge base about a business process.



4 The Selection Process

The worklet approach allows for two related but distinct areas of dynamic and flexible
workflow to be addressed: dynamic selection of tasks, and exception handling with
corrective and compensatory action. The selection process is dealt with in this section;
exception handling in the next.

 

T1 T2 T3 

 Log             Assess         Process 
Claim           Claim          Payment 

Fig. 4. Simple Insurance Claim Model

Consider the simple insurance claim example in figure 4. When this model is created
by an analyst, it is stored as a template of ‘placeholders’, each linked to a repertoire of
worklets from which one will be substituted into the placeholder at runtime. Along
with the template, a corresponding set of RDRs is created which define the worklet
selection process. That is, each placeholder corresponds to a particular chain of RDRs
within which are referenced a repertoire of worklets, one of which will be selected and
assigned to the placeholder dynamically.

Initially, the RDR chain for each placeholder will contain one rule: a defaulttrue
condition, and a conclusion referencing the one worklet defined in the model con-
structed. (It is also possible for the modeller to define several worklets for each place-
holder at design time, in which case the one deemed the most generally applicable
would be inserted as the conclusion to the default rule). Note that whenever the model
is viewed by a stakeholder, each placeholder in the template is filled with a reference to
the conclusion of the default rule (i.e. the default worklet) for that placeholder, extracted
from the RDRs that define it.

Suppose that, after a while, a new business rule is formulated which states that when
the claim comes to be assessed, if the claim amount is more than $10,000 then it must
be referred to a manager. In conventional workflow management systems, this would
require a re-definition of the model. Using the worklet approach, it simply requires
a new worklet to be added to the repertoire and a new rule added as a refinement to
the appropriate RDR by the administrator. That is, the new business rule is added as a
localised refinement of a more general rule (see fig. 3).

The modified RDR structure can be used to “backwards extract” a view or schematic
representation of the model, with the modifed rule for the second placeholder repre-
sented as XOR choice (fig. 5 – in YAWL notation, T1 represents an XOR-split task, T3

and XOR-join task). Note that the worklet approach enables the model to be displayed
as the derived view in figure 5, or as the original representation, thereby offering layers
of granularity depending on factors such as frequency of the occurrence of the condition
being satisfied. From this it can be seen that a chain of RDRs may be represented in the
modelling notation as a composite set of XOR splits and joins. The advantage of using
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Fig. 5. A ‘View’ of fig. 4 extrapolated from the modified RDR for placeholder 2

RDRs is that the correct choice is made dynamically and the available choices grow
and refine over time, negating the need to explicitly model the choices and repeatedly
update the model (with each iteration increasingly camouflaging the original business
logic).

It may also be the case that changes in the way activities are performed are identi-
fied, not by an administrator or manager, but by a worker who has been allocated a task.
Following the example above, afterLog Claimcompletes,Assess Claimis selected and
assigned to a worker’s inbox. The worker may decide that the genericAssess Claimis
not appropriate for this particular case, because this claimant resides in an identified
storm-damaged location. Thus, the workerrejectstheAssess Claimworklet (fig. 6). On
doing so, the worklet system presents the worker with the set of case data forAssess
Claim (i.e. its cornerstone case), and the set of current case data.

 

Fig. 6. Rejecting an Offered Worklet (illustration)



The worker then compares the two sets of case data to establish which relevant
aspects of the current case differ fromAssess Claim’scornerstone (fig. 7). Note that
while many of the values of the two cases differ, only those that relate directly to the
need to handle this case differently are selected. After identifying the differences, the
worker is presented with a list of possible worklet choices that may suit this particular
case, if available. The worker may choose an appropriate worklet to invoke in this case,
or, if none suit the current case, refer to an analyst to define a new worklet for the current
case. In either case, the identified differences form the conditional part of a new rule,
which is added to the RDR for this placeholder using the rule addition algorithm above.

The principles derived from Activity Theory state that all work activities are medi-
ated by rules, tools and division of labour. Translating that to an organisational work
environment, rules refer to business rules, policies and practices; tools to resources and
their limitations (physical and financial); and division of labour to organisational hier-
archies, structures, roles, lines of supervision, etc. Of course, these constraints apply to
the creation of a new worklet, just as they would in any workflow management system.

Fig. 7. Defining a New Rule (illustration)

In all future case instantiations, the new worklet defined above would be chosen for
that placeholder if the condition defined by choosing the attribute differences occur in
that instantiation’s case data. Over time, the RDR chain for the placeholder grows as
refinements are added to the rule base (fig. 3).

5 Exception Handling

Worklets may also be defined and used to provide exception handling capabilities for
events that occur during the execution of a case instance. When such an event occurs,
a corresponding global system event is triggered that passes an appropriate message to
all pending, running or suspended (i.e. live) worklets. Each worklet has a second RDR



rule base for exceptions, separate from the normal worklet selection rule base, which
is interrogated when a message is received. If the default condition in an RDR chain is
an identifier for the message received, then the worklet will handle that exception by
invoking an appropriately selected exception handling worklet. If there is no RDR for
that exception, it is simply ignored.

 

Fig. 8. Selecting an External Exception Trigger (illustration)

Exceptions may be triggered by a combination of (a) system generated messages
(e.g. deadline reached, state-change of another worklet, etc); (b) domain dependent data
(e.g. count thresholds, missing data etc.); and (c) external triggers (i.e. user interactions
– see fig. 8). Exception handling begins at the ‘lowest level child’ — that is, those child
worklets that are not also a parent — and then, when handling is complete, control
is passed up hierarchically to each parent in turn until all ‘interested’ worklets have
handled the exception. This method ensures that all exception handling tasks are defined
and performed locally and in a distributed manner.

A worklet that has been invoked as an exception handler has the ability to modify
the current process state of its invoker, or parent worklet, when it is activated and again
when it completes. By default, the invoking worklet is suspended when the exception
handler is activated, but there may be some occasions when the exception handler can
(or needs to) operate in parallel to the invoker. For example, it is undesirable to suspend
an entireConference Proceedingsprocess when a request to withdraw a single paper
has been received – it is far easier to handle the request as a (local) exception and allow
the parent process to continue. When an exception handling worklet completes, it may
unsuspend the invoker (by default), leave the invoker’s state unchanged (e.g. if it was
not suspended to begin with), or cancel the invoker worklet (e.g. a ‘withdraw paper’
exception will cancel a parent ‘review paper’ worklet).

As an example of the exception handling process, consider theDistribute Paper
worklet (fig. 9), which is invoked by the top levelCoordinate Conferenceworklet, and
in turn invokes aSend Paper for Reviewworklet, once for each reviewer selected to
review a particular paper. If, after a deadline is reached, the number of reviews returned
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Fig. 9. Worklet: Distribute Paper. Invoked byCoordinate Conference

fails to meet a pre-defined threshold, anInsufficient Reviewsexception is raised. The
exception is handled by a rule chain in the Exception KB (fig. 10) that determines
which worklet should be invoked to handle the situation.

By default, the workletReview Paperis called which organises a new reviewer for
the paper. However, if two reviews have already been received, then the paper is sent
to a Committee member for review, unless the ratings from those two reviews are high,
in which case a brief review is carried out. If all the above is true, and one of the
reviewers is a Committee member, then no further reviewing is required (NullWorklet).
If, however, the rating was not high and one of the reviewers is a Committee member,
then a brief review is also carried out in this case.
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Of course, this example is relatively simple; conditions may also be based on data
such as: time left before deadline, difficulty of paper, areas of expertise, availability
of extra reviewers, etc. Note that to build all of these conditions and related actions
into a process model in the traditional fashion would be quite a complex procedure.
To reiterate, there are two situations where selection of an appropriate worklet is to be
made:

– Normal execution - when control flows from one task to the next. In this case,
selection occurs immediately prior to the placeholder becoming enabled and so
does not depend on the current process state for instantiation. Thus, in every case
worklet selection for a particular placeholder will be based on domain specific data
values (for example: how many, who by, when, etc.).

– Exception handling - choosing the most appropriate worklet to handle an exception
will be achieved by defining RDR conditions that use a combination of current data
attribute values (both domain dependent and independent) and the current state of
each of the worklets that make up the case instance.

The current set of states for a worklet-enabled instantiated process may be deduced
by mining the process log file [32]. A set of predicates can be formalised to enable
the extraction of the current state set and any relations between active worklets. These
predicates may then be used as conditionals in RDR nodes to enable selection of the
appropriate exception handling worklet.

A full exploration of the formalisation is beyond the scope of this paper, however
the kinds of information that may be extracted from the process log file using these
predicates include the current status of a worklet, whether a worklet is a parent of child
of another worklet, when a certain state was entered or exited for a particular worklet,
the resource that triggered a state change, and so on.

An example of a user-invoked exception handler isCancel Conference, which may
occur at any time during aConference Proceedingsinstantiation. To define an entire
process cancellation in a non-worklet environment would be extremely complex, if not
impossible. Using the worklet approach, such complexities are removed. The exception
definition remains relatively simple, even though it halts the entire process and has
myriad tasks to complete depending on the current state of the entire process. ACancel
Conferencemessage is ‘broadcast’ to allow each currently active worklet to determine
the means of its own termination by querying its current state and the states of related
worklets, thereby localising the exception handling process and simplifying both the
parent exception schema and the schematic of the overall process.

After all lower level worklets have completed handling the exception, the top-level
manager worklet invokes its own exception handler. Since each worklet takes care of
its own termination according to its circumstances, the manager worklet needs only to
notify various stakeholders before finally terminating, using the process log predicates
to determine the current process state.

6 Related Work

Generally, commercial workflow management systems provide only basic support for
handling exceptions [11, 33, 34] (besides modelling them directly in the main ‘business



logic’), and each deals with them in a proprietary manner. Staffware provides constructs
calledevent nodes, from which a separate exception handling path or sequence can be
activated when an exception occurs. It may also suspend a process either indefinitely
or wait until a timeout occurs. If a work item cannot be processed it is forwarded to
a ‘default exception queue’ where it may be manually purged or re-submitted. COSA
provides for the definition of external ‘triggers’ or events that may be used to start a sub-
process. All events and sub-processes must be defined at design time. MQ Workflow
supports timeouts and, when they occur, will branch to a pre-defined exception path
and/or send a message to an administrator. SAP R/3 provides for pre-defined branches
which, when an exception occurs, allows an administrator to manually choose one of a
set of possible branches.

All the commercial products reviewed provide modelling frameworks that are basi-
cally monolithic, but with various levels of support for the decomposition of tasks and
sub-processing. Each of the products require the model to be fully defined before it can
be instantiated, and changes must be incorporated by modifying the model statically.
Staffware provides ‘re-usable process segments’ that can be inserted into any process.
SAP R/3 allows for the definition of ‘blocks’ that can be inserted into other ‘blocks’,
thus providing some support for encapsulation and reuse. COSA supports parent-sibling
processes, where data can be passed to/from a process to a sub-process. MQ Workflow
allows sub-processes to be defined and called statically from within a process.

A new, optional component of Staffware is theProcess Orchestrator[35], which
provides for the dynamic allocation of sub-processes at runtime. It requires a construct
called a “dynamic event” to be explicitly modelled that will execute a number of sub-
processes listed in an ‘array’ when execution reaches that event. Which sub-processes
execute depend on predefined data conditionals matching the current case. The listed
sub-processes are statically defined, as are the conditionals. There is no scope for dy-
namically refining conditionals, nor adding sub-processes at runtime.

TheOPERAprototype [36] allows for exceptions to be handled at the task level, or
propagated up various ancestor levels throughout the running instance. It also removes
the need to define the exception handlera-priori, although the types of exceptions han-
dled are transactional rather than control flow oriented. TheeFlow system [37] uses
rules to define exceptions, although they cannot be defined separately to the standard
model.ADEPT[38] supports modification of a process during execution (i.e. add, delete
and change the sequence of tasks). Such changes are made to a traditional monolithic
model and must be achieved via manual intervention. TheADOME system [39] pro-
vides templates that can be used to build a workflow model, and provides some support
for (manual) dynamic change. A catalog of ‘skeleton’ patterns that can be instantiated
or specialised at design time is supported by theWERDEsystem [2]. Again, there is no
scope for specialisation changes to be made at runtime. It should be noted that only a
small number of academic prototypes have had any impact on the frameworks offered
by commercial systems [40].

Note: The information on commercial products was gleaned from their relevant
manuals and other literature (unless otherwise stated). The versions examined were
Staffware Process Suite v9 (2003), MQ Workflow version 3.4 (2003), Cosa Workflow
version 4.2 (2003) and SAP R/3 Release 6.20 (2004).



7 Conclusion and Future Work

Workflow management systems impose a certain rigidity on process definition and en-
actment because they use proprietary frameworks based on assembly line metaphors
rather than on ways work is actually planned and carried out. An analysis of Activity
Theory provides principles of work practices that can be used as a template on which a
workflow management system can be built that better supports flexibility and dynamic
evolution. By capturing contextual data, a repertoire of actions may be developed that
allow for contextual choices to be made from the repertoire at runtime to efficiently
carry out work tasks. These actions, or worklets, directly provide for process evolution,
flexibility and exception handling, and mirror accepted work practices.

The worklet approach presents the promise of several key benefits, including:

– A process modeller can describe the standard activities and actions for a workflow
process, and any exceptional activities, using the same methodology;

– It allows re-use of existing process and exception handling components. Removing
the differentiation between exception handling processes and the ‘normal’ work-
flow aids in the development of fault tolerant workflows out of pre-existing building
blocks [36];

– Its modularity simplifies the logic and verification of the standard model, since
individual worklets are less complex to build and therefore verify than monolithic
models;

– It provides for workflow views of differing granularity, which offers ease of com-
prehensibility for all stakeholders;

– It allows for gradual and ongoing evolution of the model, so that global modifica-
tion each time a business practice changes or an exception occurs is unnecessary;
and

– In the occurrence of an unexpected event, the modeller needs simply to choose an
existing handler or build a new one for that exception, which can be automatically
added to the repertoire for future use as necessary, thus avoiding complexities in-
cluding downtime, model restructuring, versioning problems and so on.

A future prospect of this work involves the formalisation and implementation of the
worklet paradigm, integrating it with a workflow ‘engine’ within which it can execute.
Since it is extendible and Open Source, an engine that is particularly well-suited to
such an integration is the YAWL (Yet Another Workflow Language) workflow engine,
currently being developed at the Queensland University of Technology.

YAWL is an ideal language for the specification of control flow in workflows; it is
highly expressive and provides direct support for 19 out of 20 identified workflow pat-
terns [41]. In addition, YAWL has formal semantics and offers graphical representations
for workflow models (including worklets and the examples in this paper).
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